Manjunatha R Benakanakere

University of Pennsylvania, Filadelfia, Pennsylvania, United States

Are you Manjunatha R Benakanakere?

Claim your profile

Publications (20)

  • Source
    Manjunatha R. Benakanakere · Livia S. Finoti · Urara Tanaka · [...] · Denis F. Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Interleukin-8 (IL-8) gene polymorphisms have been considered as susceptibility factors in periodontal disease. However, the functional roles of IL-8 gene haplotypes have not been investigated. Here, we demonstrate for the first time the use of the CRISPR/Cas9 system to engineer the IL-8 gene, and tested the functionality of different haplotypes. Two sgRNAs vectors targeting the IL-8 gene and the naked homologous repair DNA carrying different haplotypes were used to successfully generate HEK293T cells carrying the AT genotype at the first SNP - rs4073 (alias -251), TT genotype at the second SNP - rs2227307 (alias +396), TC or CC genotypes at the third SNP - rs2227306 (alias +781) at the IL-8 locus. When stimulated with Poly I:C, ATC/TTC haplotype, cells significantly up-regulated the IL-8 at both transcriptional and translational levels. To test whether ATC/TTC haplotype is functional, we used a trans-well assay to measure the transmigration of primary neutrophils incubated with supernatants from the Poly I:C stimulation experiment. ATC/TTC haplotype cells significantly increased transmigration of neutrophils confirming the functional role for this IL-8 haplotype. Taken together, our data provides evidence that carriage of the ATC/TTC haplotype in itself may increase the influx of neutrophils in inflammatory lesions and influence disease susceptibility.
    Full-text available · Article · Aug 2016 · Scientific Reports
  • Toshiharu Abe · Mohammed AlSarhan · Manjunatha R Benakanakere · [...] · George Hajishengallis
    [Show abstract] [Hide abstract] ABSTRACT: B-lineage cells (B lymphocytes and plasma cells) predominate in the inflammatory infiltrate of human chronic periodontitis. However, their role in disease pathogenesis and the factors responsible for their persistence in chronic lesions are poorly understood. In this regard, two cytokines of the TNF ligand superfamily, a proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator (BLyS), are important for the survival, proliferation, and maturation of B cells. Thus, we hypothesized that APRIL and/or BLyS are upregulated in periodontitis and contribute to induction of periodontal bone loss. This hypothesis was addressed in both human and mouse experimental systems. We show that, relative to healthy controls, the expression of APRIL and BLyS mRNA and protein was upregulated in natural and experimental periodontitis in humans and mice, respectively. The elevated expression of these cytokines correlated with increased numbers of B cells/plasma cells in both species. Moreover, APRIL and BLyS partially colocalized with κ L chain-expressing B-lineage cells at the epithelial-connective tissue interface. Ligature-induced periodontitis resulted in significantly less bone loss in B cell-deficient mice compared with wild-type controls. Ab-mediated neutralization of APRIL or BLyS diminished the number of B cells in the gingival tissue and inhibited bone loss in wild-type, but not in B cell-deficient, mice. In conclusion, B cells and specific cytokines involved in their growth and differentiation contribute to periodontal bone loss. Moreover, APRIL and BLyS have been identified as potential therapeutic targets in periodontitis. Copyright © 2015 by The American Association of Immunologists, Inc.
    Article · Jul 2015 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: P. gingivalis is a prominent periodontal pathogen that has potent effects on host cells. In this study we challenged gingival epithelial cells with P. gingivalis with the aim of assessing how mRNA levels of key target genes were modulated by P. gingivalis via the transcription factors FOXO1 and FOXO3. Primary mono- and multi-layer cultures of gingival epithelial cells were challenged and barrier function was examined by fluorescent dextran and apoptosis was measured by cytoplasmic histone associated DNA. Gene expression levels were measured by real-time PCR with and without FOXO1 and FOXO3 siRNA compared to scrambled siRNA. P. gingivalis induced a loss of barrier function and stimulated gingival epithelial cell apoptosis in multilayer cultures that was in part gingipain dependent. P. gingivalis stimulated an increase in FOXO1 and FOXO3 mRNA, enhanced mRNA levels of genes associated with differentiated keratinocyte function (keratin-1, -10, -14, and involucrin), increased mRNA levels of apoptotic genes (BID and TRADD), reduced mRNA levels of genes that regulate inflammation (TLR-2 and -4) and reduced those associated with barrier function (integrin beta-1, -3 and -6). The ability of P. gingivalis to modulate these genes was predominantly FOXO1 and FOXO3 dependent. The results indicate that P. gingivalis has pronounced effects on gingival keratinocytes and modulates mRNA levels of genes that affect host response, differentiation, apoptosis and barrier function. Moreover, this modulation is dependent upon the transcription factors FOXO1 or FOXO3. In addition, a new function for FOXO1 was identified, that of suppressing TLR-2 and TLR-4 and maintaining integrin beta -1, beta -3 and beta -6 basal mRNA levels in keratinocytes.
    Full-text available · Article · Nov 2013 · PLoS ONE
  • James A Kinane · Manjunatha R Benakanakere · Jiawei Zhao · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Porphyromonas gingivalis, a Gram-negative oral pathogen, has been shown to induce apoptosis in human gingival epithelial cells, yet the underlining cellular mechanisms controlling this process are poorly understood. We have previously shown that the P. gingivalis proteases arginine and lysine gingipains, are necessary and sufficient to induce host cell apoptosis. In the present study, we demonstrate that 'P. gingivalis-induced apoptosis' is mediated through degradation of actin leading to cytoskeleton collapse. Stimulation of human gingival epithelial cells with P. gingivalis strains 33277 and W50 at moi:100 induced β-actin cleavage as early as 1 h and human serum inhibited this effect. By using gingipain-deficient mutants of P. gingivalis and purified gingipains, we demonstrate that lysine gingipain is involved in actin hydrolysis in a dose and time-dependent manner. Use of Jasplakinolide and cytochalasin D revealed that P. gingivalis internalization is necessary for actin cleavage. Further, we also show that lysine gingipain from P. gingivalis can cleave active caspase 3. Taken together, we have identified actin as a substrate for lysine gingipain and demonstrated a novel mechanism involved in microbial host cell invasion and apoptosis.
    Article · Mar 2012 · Cellular Microbiology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The ability of IFN-β to induce IL-10 production from innate immune cells is important for its anti-inflammatory properties and is believed to contribute to its therapeutic value in treating multiple sclerosis patients. In this study, we identified that IFN-β stimulates IL-10 production by activating the JAK1- and PI3K-signaling pathways. JAK1 activity was required for IFN-β to activate PI3K and Akt1 that resulted in repression of glycogen synthase kinase 3 (GSK3)-β activity. IFN-β-mediated suppression of GSK3-β promoted IL-10, because IL-10 production by IFN-β-stimulated dendritic cells (DC) expressing an active GSK3-β knockin was severely reduced, whereas pharmacological or genetic inhibition of GSK3-β augmented IL-10 production. IFN-β increased the phosphorylated levels of CREB and STAT3 but only CREB levels were affected by PI3K. Also, a knockdown in CREB, but not STAT3, affected the capacity of IFN-β to induce IL-10 from DC. IL-10 production by IFN-β-stimulated DC was shown to suppress IFN-γ and IL-17 production by myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, and this IL-10-dependent anti-inflammatory effect was enhanced by directly targeting GSK3 in DC. These findings highlight how IFN-β induces IL-10 production and the importance that IL-10 plays in its anti-inflammatory properties, as well as identify a therapeutic target that could be used to increase the IL-10-dependent anti-inflammatory properties of IFN-β.
    Full-text available · Article · Jan 2011 · The Journal of Immunology
  • Jiawei Zhao · Manjunatha R Benakanakere · Kavita B Hosur · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Recent studies implicate the mammalian target of rapamycin (mTOR) pathway in the control of inflammatory responses following Toll-like receptor (TLR) stimulation in myeloid cells but its role in non-myeloid cells such as human keratinocytes is unknown. Here we show that TLR3 signaling can induce robust cytokine secretion including interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), IL-12p70 and interferon beta (IFN-β), and our data reveal for the first time that inhibiting mTOR with rapamycin, suppresses these TLR3 induced responses but actually enhances bioactive IL-12p70 production in human oral keratinocytes. Rapamycin inhibited the phosphorylation of the 70-kDa ribosomal protein S6 kinase (p70S6K) and the 4E binding protein 1 (4EBP-1), and suppressed the mitogen activated protein kinase (MAPK) pathway by decreasing phosphorylation of c-Jun N-terminal kinase (JNK). We also show that TLR3 induces interferon regulatory factor 3 (IRF3) activation by Akt via an mTOR-p70S6K-4EBP1 pathway. Furthermore, we provide evidence that Poly I:C induced expression of IL-1β, TNFα, IL-12p70 and IFN-β was blocked by JNK inhibitor SP600125. TLR3 preferentially phosphorylated IKKα through mTOR to activate nuclear factor kappa beta (NF-κB) in human oral keratinocytes. Taken together, these data demonstrate p70S6K, p4EBP1, JNK, NF-κB and IRF3 are involved in the regulation of inflammatory mediators by TLR3 via the mTOR pathway. mTOR is a novel pathway modulating TLR3 induced inflammatory and antiviral responses in human oral keratinocytes.
    Article · Nov 2010 · Molecular Immunology
  • Source
    Manjunatha R Benakanakere · Jiawei Zhao · Johnah C Galicia · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Host defense against invading pathogens is triggered by various receptors including toll-like receptors (TLRs). Activation of TLRs is a pivotal step in the initiation of innate, inflammatory, and antimicrobial defense mechanisms. Human beta-defensin 2 (HBD-2) is a cationic antimicrobial peptide secreted upon gram-negative bacterial perturbation in many cells. Stimulation of various TLRs has been shown to induce HBD-2 in oral keratinocytes, yet the underlying cellular mechanisms of this induction are poorly understood. Here we demonstrate that HBD-2 induction is mediated by the Sphingosine kinase-1 (Sphk-1) and augmented by the inhibition of Glycogen Synthase Kinase-3beta (GSK-3beta) via the Phosphoinositide 3-kinase (PI3K) dependent pathway. HBD-2 secretion was dose dependently inhibited by a pharmacological inhibitor of Sphk-1. Interestingly, inhibition of GSK-3beta by SB 216763 or by RNA interference, augmented HBD-2 induction. Overexpression of Sphk-1 with concomitant inhibition of GSK-3beta enhanced the induction of beta-defensin-2 in oral keratinocytes. Ectopic expression of constitutively active GSK-3beta (S9A) abrogated HBD-2 whereas kinase inactive GSK-3beta (R85A) induced higher amounts of HBD-2. These data implicate Sphk-1 in HBD-2 regulation in oral keratinocytes which also involves the activation of PI3K, AKT, GSK-3beta and ERK 1/2. Thus we reveal the intricate relationship and pathways of toll-signaling molecules regulating HBD-2 which may have therapeutic potential.
    Full-text available · Article · Jul 2010 · PLoS ONE
  • Source
    Panagiota G Stathopoulou · Manjunatha R Benakanakere · Johnah C Galicia · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.
    Full-text available · Article · Jan 2010 · Journal Of Clinical Periodontology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria. We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes. We developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases.
    Full-text available · Article · Dec 2009 · BMC Microbiology
  • Source
    Carlos A Garcia · Huizhi Wang · Manjunatha R Benakanakere · [...] · Michael Martin
    [Show abstract] [Hide abstract] ABSTRACT: IL-12p70 is an immunoregulatory cytokine that has been shown to induce IL-10 production from CD4+ T cells, yet the underlying cellular mechanisms controlling this process are poorly understood. In the present study, we demonstrate that IL-12p70 induces IL-10 production from human memory CD4+ T cells via a PI3K-dependent signaling mechanism. Specifically, stimulation of human memory CD4+ T cells in the presence of IL-12p70 lead to increased PI3K activity and the subsequent phosphorylation and inactivation of the downstream constitutively active serine/threonine kinase, glycogen synthase kinase-3beta (GSK3beta). Inhibition of PI3K prevented the inactivation of GSK3beta by IL-12p70, as well as the subsequent ability of IL-12p70 to augment IL-10 levels by memory CD4+ T cells. Moreover, ectopic expression of a constitutively active form of GSK3beta abrogated the ability of IL-12p70 to increase IL-10 production by TCR-stimulated CD4+ T cells. In contrast, direct inhibition of GSK3 mimicked the effect of IL-12p70 on IL-10 production by memory CD4+ T cells. Analysis of downstream transcription factors identified that the ability of IL-12p70 to inactivate GSK3beta lead to increased levels of c-jun. The ability of IL-12p70 to inactivate GSK3beta and induce c-jun levels was required for IL-12 to augment IL-10 production by human memory CD4+ T cells, since small interfering RNA-mediated gene silencing of c-jun abrogated this process. These studies identify the cellular mechanism by which IL-12 induces IL-10 production from human memory CD4+ T cells.
    Full-text available · Article · Oct 2009 · The Journal of Immunology
  • Source
    Manjunatha R Benakanakere · Qiyan Li · Mehmet A Eskan · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Mammalian biological processes such as inflammation, involve regulation of hundreds of genes controlling onset and termination. MicroRNAs (miRNAs) can translationally repress target mRNAs and regulate innate immune responses. Our model system comprised primary human keratinocytes, which exhibited robust differences in inflammatory cytokine production (interleukin-6 and tumor necrosis factor-alpha) following specific Toll-like receptor 2 and 4 (TLR-2/TLR-4) agonist challenge. We challenged these primary cells with Porphyromonas gingivalis (a Gram-negative bacterium that triggers TLR-2 and TLR-4) and performed miRNA expression profiling. We identified miRNA (miR)-105 as a modulator of TLR-2 protein translation in human gingival keratinocytes. There was a strong inverse correlation between cells that had high cytokine responses following TLR-2 agonist challenge and miR-105 levels. Knock-in and knock-down of miR-105 confirmed this inverse relationship. In silico analysis predicted that miR-105 had complementarity for TLR-2 mRNA, and the luciferase reporter assay verified this. Further understanding of the role of miRNA in host responses may elucidate disease susceptibility and suggest new anti-inflammatory therapeutics.
    Full-text available · Article · Jun 2009 · Journal of Biological Chemistry
  • Source
    Johnah C Galicia · Manjunatha R Benakanakere · Panagiota G Stathopoulou · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: In the pathogenesis of chronic inflammatory periodontal disease, neutrophils are recognized as a major cellular component from the histopathology of the periodontal lesion around teeth and from clinical cases where absence or dysfunction of neutrophils results in major periodontal destruction. Neutrophils are recruited in vast numbers into the gingival crevice during periodontal inflammation, attracted by microbial plaque chemoattractants and chemokines released following microbial perturbation of gingival epithelial cells. Porphyromonas gingivalis, a major periodontopathogen, triggers a vast array of cellular responses in gingival epithelial cells but also induces apoptosis. We demonstrate here that neutrophils, when combined in a P. gingivalis challenge assay of epithelial cells, prevent epithelial cell apoptosis by phagocytosing P. gingivalis and later undergoing apoptosis themselves. By removing P. gingivalis by phagocytosis, neutrophils also protect the host from the harmful effects of its microbial proteases, which degrade inflammatory cytokines and other host molecules.
    Full-text available · Article · May 2009 · Journal of leukocyte biology
  • D. KINANE · J. GALICIA · M.R. BENAKANAKERE · [...] · B. GUGGENHEIM
    [Show abstract] [Hide abstract] ABSTRACT: Objectives: Chronic inflammatory periodontal disease is initiated by the dental plaque biofilm's perturbation of the gingival tissues. The epithelium lining the gingival crevice is in juxtaposition to the subgingival plaque biofilm. We aimed to develop a model that incorporated this eukaryotic:prokaryotic cell interaction by co-culturing primary human gingival epithelial cells (HGEC) with a dental plaque biofilm prepared in-vitro. Methods: Low passage HGECs from healthy donors (1x106 cells/culture well) were challenged with the biofilm consisting of ten subgingival bacterial species, namely: Campylobacter rectus, Fusobacterium nucleatum subsp. vincentii KP-F2, Porphyromonas gingivalis ATCC 33277, Prevotella intermedia ATCC 25611, Tannerella forsythia, Treponema lecithinolyticum ATCC 700332, Veillonella dispar ATCC 17748, Actinomyces naeslundii, Streptococcus intermedius ATCC 27335, and Streptococcus oralis. Unchallenged HGECs were the negative control. After 4 and 24 hours, supernatants from these challenges were collected and analyzed for IL-1, IL-6 and IL-8 using ELISA. HGECs were fixed and then tested for apoptosis using TUNEL assay. Results: IL-1B, IL-6 and IL-8 levels were significantly elevated at 4 hours from baseline but at 24 hours cytokines were significantly reduced. Approximately 75% of the cells showed signs of blebbing and pyknotic nuclei and stained positive for TUNEL at 4h, and at 24h more than 85% of the HGECs were apoptotic. Furthermore the subgingival biofilm was noted to induce direct cytokine degradation. Conclusion: An organized bacterial community such as that of the modeled subgingival biofilm is pathogenic for human gingival epithelial cells, through induction of apoptosis and degradation of pro-inflammatory cytokines. Supported by NIH Grant DE017384.
    Conference Paper · Apr 2009
  • Source
    P G Stathopoulou · M R Benakanakere · J C Galicia · D F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Clinical studies indicate that primary proinflammatory cytokines, such as interleukin-1beta (IL-1beta) are elevated in the gingival crevice around teeth with periodontitis but the secondary cytokines and chemokines, IL-6 and IL-8, are not. The human gingival epithelial cells (HGECs) lining the gingival sulcus respond to perturbation by microbes of dental plaque by releasing a wide range of cytokines. Porphyromonas gingivalis, a putative periodontal pathogen, possesses numerous virulence factors some of which directly impact on the host response. In the present study, we sought to determine how P. gingivalis influences the inflammatory cytokine responses. HGECs were challenged with P. gingivalis and other putative periodontal pathogens, and the resultant production of IL-1beta, IL-6, and IL-8 was assayed by enzyme-linked immunosorbent assay (ELISA). Culture supernatants and recombinant human cytokines were challenged with live P. gingivalis wild-type and gingipain-deficient strains and the resultant cytokine profile was assessed by ELISA and Western blot. We show here that primary HGECs challenged with live P. gingivalis result in high levels of IL-1beta but not the related secondary cytokines IL-6 and IL-8. We further demonstrate that cytokine response differences are the result of the action of P. gingivalis proteases, with lysine gingipain being the most effective. We conclude that P. gingivalis, through lysine gingipain, can subvert the protective host proinflammatory response by direct cytokine degradation. Changes in the crevicular cytokine profile have consequences in periodontal disease pathogenesis that should be considered in the development of diagnostic and therapeutic modalities.
    Full-text available · Article · Mar 2009 · Oral Microbiology and Immunology
  • Source
    Panagiota G Stathopoulou · Johnah C Galicia · Manjunatha R Benakanakere · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: The oral pathogen Porphyromonas gingivalis has been shown to modulate apoptosis in different cell types, but its effect on epithelial cells remains unclear. We demonstrate that primary human gingival epithelial cells (HGECs) challenged with live P. gingivalis for 24 hours exhibit apoptosis, and we characterize this by M30 epitope detection, caspase-3 activity, DNA fragmentation and Annexin-V staining. Live bacteria strongly upregulated intrinsic and extrinsic apoptotic pathways. Pro-apoptotic molecules such as caspase-3, -8, -9, Bid and Bax were upregulated after 24 hours. The anti-apoptotic Bcl-2 was also upregulated, but this was not sufficient to ensure cell survival. The main P. gingivalis proteases arginine and lysine gingipains are necessary and sufficient to induce host cell apoptosis. Thus, live P. gingivalis can invoke gingival epithelial cell apoptosis in a time and dose dependent manner with significant apoptosis occurring between 12 and 24 hours of challenge via a gingipain-dependent mechanism. The present study provides evidence that live, but not heat-killed, P. gingivalis can induce apoptosis after 24 hours of challenge in primary human gingival epithelial cells. Either arginine or lysine gingipains are necessary and sufficient factors in P. gingivalis elicited apoptosis.
    Full-text available · Article · Feb 2009 · BMC Microbiology
  • Source
    Carlos A Garcia · Manjunatha R Benakanakere · Pascale Alard · [...] · Michael Martin
    [Show abstract] [Hide abstract] ABSTRACT: Signals induced by the TCR and CD28 costimulatory pathway have been shown to lead to the inactivation of the constitutively active enzyme, glycogen synthase kinase-3 (GSK3), which has been implicated in the regulation of IL-2 and T cell proliferation. However, it is unknown whether GSK3 plays a similar role in naive and memory CD4(+) T cell responses. Here we demonstrate a divergence in the dependency on the inactivation of GSK3 in the proliferative responses of human naive and memory CD4(+) T cells. We find that although CD28 costimulation increases the frequency of phospho-GSK3 inactivation in TCR-stimulated naive and memory CD4(+) T cells, memory cells are less reliant on GSK3 inactivation for their proliferative responses. Rather we find that GSK3beta plays a previously unrecognized role in the selective regulation of the IL-10 recall response by human memory CD4(+) T cells. Furthermore, GSK3beta-inactivated memory CD4(+) T cells acquired the capacity to suppress the bystander proliferation of CD4(+) T cells in an IL-10-dependent, cell contact-independent manner. Our findings reveal a dichotomy present in the function of GSK3 in distinct human CD4(+) T cell populations.
    Full-text available · Article · Jan 2009 · The Journal of Immunology
  • Source
    Mehmet A Eskan · Manjunatha R Benakanakere · Beate G Rose · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Periodontitis is a chronic human inflammatory disease initiated and sustained by dental plaque microorganisms. A major contributing pathogen is Porphyromonas gingivalis, a gram-negative bacterium recognized by Toll-like receptor 2 (TLR2) and TLR4, which are expressed by human gingival epithelial cells (HGECs). However, it is still unclear how these cells respond to P. gingivalis and initiate inflammatory and immune responses. We have reported previously that HGECs produce a wide range of proinflammatory cytokines, including interleukin-6 (IL-6), IL-8, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor alpha (TNF-α), and IL-1β. In this study, we show that IL-1β has a special role in the modulation of other inflammatory cytokines in HGECs challenged with P. gingivalis. Our results show that the increased production of IL-1β correlates with the cell surface expression of TLR4, and more specifically, TLR4-normal HGECs produce fourfold more IL-1β than do TLR4-deficient HGECs after challenge. Moreover, blocking the IL-1β receptor greatly reduces the production of “secondary” proinflammatory cytokines such as IL-8 or IL-6. Our data indicate that the induction of IL-1β plays an important role in mediating the release of other proinflammatory cytokines from primary human epithelial cells following challenge with P. gingivalis, and this process may be an inflammatory enhancement mechanism adopted by epithelial cells.
    Full-text available · Article · Jun 2008 · Infection and immunity
  • Source
    Mehmet A Eskan · Beate G Rose · Manjunatha R Benakanakere · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: Toll-like receptors (TLR) are pattern recognition receptors for highly conserved microbial molecular patterns. Activation of TLR is a pivotal step in the initiation of innate, inflammatory, and immune defense mechanisms. Recent findings indicate that G protein-coupled receptors (GPCR) may modulate TLR signaling, but it is unclear which GPCR are involved in this process. One such cooperation between GPCR and TLR can be attributed to the sphingosine 1-phosphate (S1P) receptor family. The S1P receptors (S1P1-5) are a family of GPCR with a high affinity for S1P, a serum-borne bioactive lipid associated with diverse biological activities such as inflammation and healing. In this study, we show that pro-inflammatory cytokine production, including IL-6 and IL-8, was increased with LPS and concomitant S1P stimulation. Furthermore, elevated cytokine production following LPS and S1P challenge in human gingival epithelial cells (HGEC) was significantly reduced when TLR4, S1P1 or S1P3 signaling was blocked. Our study also shows that S1P1 and S1P3 expression was induced by LPS in HGEC, and this elevated expression enhanced the influence of S1P in its cooperation with TLR4 to increase cytokine production. This cooperation between TLR4 and S1P1 or S1P3 demonstrates that TLR4 and GPCR can interact to enhance cytokine production in epithelial cells.
    Full-text available · Article · May 2008 · European Journal of Immunology
  • Source
    Mehmet A Eskan · Beate G Rose · Manjunatha R Benakanakere · [...] · Denis F Kinane
    [Show abstract] [Hide abstract] ABSTRACT: IFN-beta production is a critical step in human innate immune responses and is primarily controlled at the transcription level by highly ordered mechanisms. IFN-beta can be induced by pattern-recognition receptors such as the TLR4. S1P1 is a G protein-coupled receptor, which has a high affinity for sphingosine 1-phosphate (S1P). Although many of the receptors and signaling pathways leading to the expression of IFN-beta have been identified and characterized, it is still unclear how IFN-beta is regulated in primary human gingival epithelial cells (HGECs). In this study, we demonstrate that S1P1 and TLR4, acting in unison, play an important role in IFN-beta expression at the protein and mRNA level in HGECs. We demonstrate that the expression of both IFN-beta and IFN-inducible protein-10 (CXCL-10) is significantly up-regulated by LPS and S1P or LPS and a specific S1P1 agonist. This enhanced innate immune response is attenuated in HGECs by small interfering RNA knockdown of either TLR4 or S1P1. Moreover, we show that triggering of TLR4 results in the increased expression of S1P1 receptors. Furthermore, we found that IFN-regulatory factor 3 activation was maximized by LPS and S1P through PI3K. Our data show that triggering TLR4 increases S1P1, such that both TLR4 and S1P1 acting through PI3K enhancement of IFN-regulatory factor 3 activation increase IFN-beta expression in epithelial cells. The functional association between TLR4 and the S1P1 receptor demonstrates a novel mechanism in the regulation of IFN-beta and CXCL-10 in human primary gingival epithelial cells.
    Full-text available · Article · Mar 2008 · The Journal of Immunology
  • Denis F Kinane · Johnah Cortez Galicia · Sven-Ulrik Gorr · [...] · Manjunatha Benakanakere
    [Show abstract] [Hide abstract] ABSTRACT: Dental plaque, a microbial biofilm that accumulates on teeth and initiates periodontal disease, is composed of hundreds of different bacterial species within an organized structure. The biofilm bacteria and their byproducts irritate the gingival epithelium and induce an "inflammatory response". The perturbation of epithelial cells by bacteria is the first stage in the initiation of inflammatory and immune processes which eventually cause destruction of the tissues surrounding and supporting the teeth, and ultimately result in tooth loss. This review addresses the early bacterial-epithelial cell interactions and the subsequent responses of the epithelial cell. It includes discussion of how epithelial Toll-like receptors (TLRs) respond to different bacterial challenges, the variable antimicrobial peptides released and the host signaling responses which trigger release of these molecules and the overall fate of these cells in terms of survival, apoptosis, or cell lysis.
    Article · Feb 2008 · Frontiers in Bioscience