Karl W Broman

University of Wisconsin, Madison, Mississippi, United States

Are you Karl W Broman?

Claim your profile

Publications (175)959.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Meiotic recombination is initiated by programmed double strand breaks (DSBs), only a small subset of which are resolved into crossovers (COs). The mechanism determining the location of these COs is not well understood. Studies in plants, fungi, and insects indicate that the same genomic regions are involved in synaptic initiation and COs, suggesting that early homolog alignment is correlated with the eventual resolution of DSBs as COs. It is generally assumed that this relationship extends to mammals, but little effort has been made to test this idea. Accordingly, we conducted an analysis of synaptic initiation sites (SISs) and COs in human and mouse spermatocytes and oocytes. In contrast to our expectation, we observed remarkable sex- and species-specific differences, including pronounced differences between human males and females in both the number and chromosomal location of SISs. Further, the combined data from our studies in mice and humans suggest that the relationship between SISs and COs in mammals is a complex one that is not dictated by the sites of synaptic initiation as reported in other organisms, although it is clearly influenced by them.
    No preview · Article · Dec 2015 · The American Journal of Human Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously proposed a simple regression-based method to map quantitative trait loci underlying function-valued phenotypes. In order to better handle the case of noisy phenotype measurements and accommodate the correlation structure among time points, we propose an alternative approach that maintains much of the simplicity and speed of the regression-based method. We overcome noisy measurements by replacing the observed data with a smooth approximation. We then apply functional principal component analysis, replacing the smoothed phenotype data with a small number of principal components. Quantitative trait locus mapping is applied to these dimension-reduced data, either with a multi-trait method or by considering the traits individually and then taking the average or maximum LOD score across traits. We apply these approaches to root gravitropism data on Arabidopsis recombinant inbred lines and further investigate their performance in computer simulations. Our methods have been implemented in the R package, funqtl.
    Preview · Article · Nov 2015 · G3-Genes Genomes Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies of the genetic loci that contribute to variation in gene expression frequently identify loci with broad effect on gene expression: expression quantitative trait locus (eQTL) hotspots. We describe a set of exploratory graphical methods as well as a formal likelihood-based test for assessing whether a given hotspot is due to one or multiple polymorphisms. We first look at the pattern of effects of the locus on the expression traits that map to the locus: the direction of the effects, as well as the degree of dominance. A second technique is to focus on the individuals that exhibit no recombination event in the region, apply dimensionality reduction (such as with linear discriminant analysis) and compare the phenotype distribution in the non-recombinants to that in the recombinant individuals: If the recombinant individuals display a different expression pattern than the non-recombinants, this indicates the presence of multiple causal polymorphisms. In the formal likelihood-based test, we compare a two-locus model, with each expression trait affected by one or the other locus, to a single-locus model. We apply our methods to a large mouse intercross with gene expression microarray data on six tissues.
    No preview · Article · Oct 2015 · Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: We surveyed gene expression in six tissues in an F2 intercross between mouse strains C57BL/6J (abbreviated B6) and BTBR T(+) tf /J (abbreviated BTBR) made genetically obese with the Leptin(ob) mutation. We identified a number of expression quantitative trait loci (eQTL) affecting the expression of numerous genes distal to the locus, called trans-eQTL hotspots. Some of these trans-eQTL hotspots showed effects in multiple tissues, whereas some were specific to a single tissue. An unusually large number of transcripts (~8% of genes) mapped in trans to a hotspot on chromosome 6, specifically in pancreatic islets. By considering the first two principal components of the expression of genes mapping to this region, we were able to convert the multivariate phenotype into a simple Mendelian trait. Fine-mapping the locus by traditional methods reduced the QTL interval to a 298 kb region containing only three genes, including Slco1a6, one member of a large family of organic anion transporters. Direct genomic sequencing of all Slco1a6 exons identified a non-synonymous coding SNP that converts a highly conserved proline residue at amino acid position 564 to serine. Molecular modeling suggests that Pro564 faces an aqueous pore within this 12-transmembrane domain-spanning protein. When transiently overexpressed in HEK293 cells, BTBR OATP1A6-mediated cellular uptake of the bile acid taurocholic acid (TCA) was enhanced compared to B6 OATP1A6. Our results suggest that genetic variation in Slco1a6 leads to altered transport of TCA (and potentially other bile acids) by pancreatic islets, resulting in broad gene regulation.
    No preview · Article · Sep 2015 · Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the six weeks after birth. We use genetic mapping in large F2 intercrosses between Gough Island mice and WSB to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations, and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. Copyright © 2015, The Genetics Society of America.
    No preview · Article · Jul 2015 · Genetics
  • Karl W. Broman
    [Show abstract] [Hide abstract]
    ABSTRACT: The value of interactive graphics for making sense of high-dimensional data has long been appreciated but is still not in routine use. I will describe my efforts to develop interactive graphical tools for genetic data, using JavaScript and D3. (The tools are available as an R package: R/qtlcharts, http://kbroman.org/qtlcharts). I will focus on an expression genetics experiment in the mouse, with gene expression microarray data on each of six tissues, plus high-density genotype data, in each of 500 mice. I argue that in research with such data, precise statistical inference is not so important as data visualization.
    No preview · Conference Paper · Feb 2015
  • Source
    Karl W Broman
    [Show abstract] [Hide abstract]
    ABSTRACT: Every data visualization can be improved with some level of interactivity. Interactive graphics hold particular promise for the exploration of high-dimensional data. R/qtlcharts is an R package to create interactive graphics for experiments to map quantitative trait loci (QTL; genetic loci that influence quantitative traits). R/qtlcharts serves as a companion to the R/qtl package, providing interactive versions of R/qtl's static graphs, as well as additional interactive graphs for the exploration of high-dimensional genotype and phenotype data. Copyright © 2014, The Genetics Society of America.
    Preview · Article · Dec 2014 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The wild North American sunflowers Helianthus annuus and H. debilis are participants in one of the earliest identified examples of adaptive trait introgression, and the exchange is hypothesized to have triggered a range expansion in H. annuus. However, the genetic basis of the adaptive exchange has not been examined. Here, we combine quantitative trait locus (QTL) mapping with field measurements of fitness to identify candidate H. debilis QTL alleles likely to have introgressed into H. annuus to form the natural hybrid lineage H. a. texanus. Two 500-individual BC1 mapping populations were grown in central Texas, genotyped for 384 SNP markers, and then phenotyped in the field for two fitness and 22 herbivore resistance, ecophysiological, phenological, and architectural traits. We identified a total of 110 QTL, including at least one QTL for 22 of the 24 traits. Over 75% of traits exhibited at least one H. debilis QTL allele that would shift the trait in the direction of the wild hybrid H. a. texanus. We identified three chromosomal regions where H. debilis alleles increased both female and male components of fitness; these regions are expected to be strongly favored in the wild. QTL for a number of other ecophysiological, phenological, and architectural traits co-localized with these three regions and are candidates for the actual traits driving adaptive shifts. G × E interactions played a modest role, with 17% of the QTL showing potentially divergent phenotypic effects between the two field sites. The candidate adaptive chromosomal regions identified here serve as explicit hypotheses for how the genetic architecture of the hybrid lineage came into existence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Full-text · Article · Dec 2014 · Molecular Ecology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The risk of aneuploidy increases dramatically with maternal age. The likelihood of having a clinically recognized trisomic pregnancy is 2% to 3% for women in their 20s but increases to greater than 30% for women in their 40s. The basis for the increased risk of aneuploidy in older women is unknown. One of the most cited potential mechanisms is the production-line hypothesis, which was initially proposed in 1968. The hypothesis has 2 key components. First, it assumes that the first oocytes to enter meiosis are the first to be ovulated and that those entering meiosis last are ovulated at the end of the reproductive lifespan. Second, it assumes that the first oocytes entering meiosis have more recombination events (crossovers) than do those entering meiosis later in fetal life. Experimental evidence has been consistent with the first tenet of the production-line hypothesis: Radiolabeling studies in rodents have demonstrated that that there is a production line; the first oocytes to enter meiosis are the first to be ovulated. However, the second tenet (the predicted relationship between recombination levels and maternal age), which assumes a difference in recombination levels between oocytes entering meiosis early in fetal life and those entering late in fetal life, remains unproven. The aim of this study was to test the second tenet of the production-line hypothesis by examining meiotic recombination in human fetal oocytes. Molecular cytogenetic analysis of second-trimester human fetal ovaries was used to directly examine the number and distribution of crossover-associated proteins in prophase-stage oocytes. A total of 8518 eggs from 191 ovarian samples were collected from second-trimester elective abortions. Crossover-associated proteins in prophase-stage oocytes were examined with immunofluorescence. A high incidence of abnormal cells was found in aging women, but just as many was found in younger women. There was considerable variation in crossovers within and among women, but no evidence for a relationship of recombination-associated changes with maternal age. This study provides a direct test of the second tenet of the production-line hypothesis and demonstrates that it is not the basis for the maternal-age effect on aneuploidy.
    No preview · Article · Nov 2014 · Obstetrical and Gynecological Survey
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic mapping studies in the mouse and other model organisms are used to search for genes underlying complex phenotypes. Traditional genetic mapping studies that employ single-generation crosses have poor mapping resolution and limit discovery to loci that are polymorphic between the two parental strains. Multiparent outbreeding populations address these shortcomings by increasing the density of recombination events and introducing allelic variants from multiple founder strains. However, multiparent crosses present new analytical challenges and require specialized software to take full advantage of these benefits. Each animal in an outbreeding population is genetically unique and must be genotyped using a high-density marker set; regression models for mapping must accommodate multiple founder alleles, and complex breeding designs give rise to polygenic covariance among related animals that must be accounted for in mapping analysis. The Diversity Outbred (DO) mice combine the genetic diversity of eight founder strains in a multigenerational breeding design that has been maintained for >16 generations. The large population size and randomized mating ensure the long-term genetic stability of this population. We present a complete analytical pipeline for genetic mapping in DO mice, including algorithms for probabilistic reconstruction of founder haplotypes from genotyping array intensity data, and mapping methods that accommodate multiple founder haplotypes and account for relatedness among animals. Power analysis suggests that studies with as few as 200 DO mice can detect loci with large effects, but loci that account for <5% of trait variance may require a sample size of up to 1000 animals. The methods described here are implemented in the freely available R package DOQTL.
    Full-text · Article · Sep 2014 · G3-Genes Genomes Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Importance: Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses. Therefore, we evaluated a vaccine strategy designed to induce both antibody and T cell responses, which may provide more broadly cross-protective immunity against influenza. Here, we show in a translational primate model that vaccination with a modified vaccinia virus Ankara encoding hemagglutinin from a heterosubtypic H5N1 virus was associated with reduced shedding of a pandemic H1N1 virus challenge, while vaccination with MVA encoding nucleoprotein, an internal viral protein, was not. Unexpectedly, this reduced shedding was associated with nonneutralizing antibodies that bound H1 hemagglutinin and activated natural killer cells. Therefore, antibody-dependent cellular cytotoxicity (ADCC) may play a role in cross-protective immunity to influenza virus. Vaccines that stimulate ADCC antibodies may enhance protection against pandemic influenza virus.
    Full-text · Article · Sep 2014 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most important risk factor for human aneuploidy is increasing maternal age, but the basis of this association remains unknown. Indeed, one of the earliest models of the maternal-age effect-the "production-line model" proposed by Henderson and Edwards in 1968-remains one of the most-cited explanations. The model has two key components: (1) that the first oocytes to enter meiosis are the first ovulated and (2) that the first to enter meiosis have more recombination events (crossovers) than those that enter meiosis later in fetal life. Studies in rodents have demonstrated that the first oocytes to enter meiosis are indeed the first to be ovulated, but the association between the timing of meiotic entry and recombination levels has not been tested. We recently initiated molecular cytogenetic studies of second-trimester human fetal ovaries, allowing us to directly examine the number and distribution of crossover-associated proteins in prophase-stage oocytes. Our observations on over 8,000 oocytes from 191 ovarian samples demonstrate extraordinary variation in recombination within and among individuals but provide no evidence of a difference in recombination levels between oocytes entering meiosis early in fetal life and those entering late in fetal life. Thus, our data provide a direct test of the second tenet of the production-line model and suggest that it does not provide a plausible explanation for the human maternal-age effect, meaning that-45 years after its introduction-we can finally conclude that the production-line model is not the basis for the maternal-age effect on trisomy.
    Preview · Article · Jul 2014 · The American Journal of Human Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Noise-induced hearing loss (NIHL) is a prevalent health risk. Inbred mouse strains 129S6/SvEvTac (129S6) and MOLF/EiJ (MOLF) show strong NIHL resistance (NR) relative to CBA/CaJ (CBACa). In this study, we developed quantitative trait locus (QTL) maps for NR. We generated F1 animals by intercrossing (129S6 × CBACa) and (MOLF × CBACa). In each intercross, NR was recessive. N2 animals were produced by backcrossing F1s to their respective parental strain. The 232 N2-129S6 and 225 N2-MOLF progenies were evaluated for NR using auditory brainstem response. In 129S6, five QTL were identified on chromosomes (Chr) 17, 18, 14, 11, and 4, referred to as loci nr1, nr2, nr3, nr4, and nr5, respectively. In MOLF, four QTL were found on Chr 4, 17, 6, and 12, referred to as nr7, nr8, nr9, and nr10, respectively. Given that NR QTL were discovered on Chr 4 and 17 in both the N2-129S6 and N2-MOLF cross, we generated two consomic strains by separately transferring 129S6-derived Chr 4 and 17 into an otherwise CBACa background and a double-consomic strain by crossing the two strains. Phenotypic analysis of the consomic strains indicated that whole 129S6 Chr 4 contributes strongly to mid-frequency NR, while whole 129S6 Chr 17 contributes markedly to high-frequency NR. Therefore, we anticipated that the double-consomic strain containing Chr 4 and 17 would demonstrate NR across the mid- and high-frequency range. However, whole 129S6 Chr 17 masks the expression of mid-frequency NR from whole 129S6 Chr 4. To further dissect NR on 129S6 Chr 4 and 17, CBACa.129S6 congenic strains were generated for each chromosome. Phenotypic analysis of the Chr 17 CBACa.129S6 congenic strains further defined the NR region on proximal Chr 17, uncovered another NR locus (nr6) on distal Chr 17, and revealed an epistatic interaction between proximal and distal 129S6 Chr 17.
    No preview · Article · Jun 2014 · Journal of the Association for Research in Otolaryngology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most statistical methods for QTL mapping focus on a single phenotype. However, multiple phenotypes are commonly measured, and recent technological advances have greatly simplified the automated acquisition of numerous phenotypes, including function-valued phenotypes, such as growth measured over time. While there exist methods for QTL mapping with function-valued phenotypes, they are generally computationally intensive and focus on single-QTL models. We propose two simple, fast methods that maintain high power and precision and are amenable to extensions with multiple-QTL models using a penalized likelihood approach. After identifying multiple QTL by these approaches, we can view the function-valued QTL effects to provide a deeper understanding of the underlying processes. Our methods have been implemented as a package for R, funqtl.
    Full-text · Article · Jun 2014 · Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most statistical methods for QTL mapping focus on a single phenotype. However, multiple phenotypes are commonly measured, and recent technological advances have greatly simplified the automated acquisition of numerous phenotypes, including function-valued phenotypes, such as growth measured over time. While there exist methods for QTL mapping with function-valued phenotypes, they are generally computationally intensive and focus on single-QTL models. We propose two simple, fast methods that maintain high power and precision and are amenable to extensions with multiple-QTL models using a penalized likelihood approach. After identifying multiple QTL by these approaches, we can view the function-valued QTL effects to provide a deeper understanding of the underlying processes. Our methods have been implemented as a package for R, funqtl.
    No preview · Article · Feb 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider genomic imputation for low-coverage genotyping-by-sequencing data with high levels of missing data. We compensate for this loss of information by utilizing family relationships in multi-parental experimental crosses. This nearly quadruples the number of usable markers when applied to a large rice Multiparent Advanced Generation InterCross (MAGIC) study.
    Preview · Article · Feb 2014 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a mouse intercross with more than 500 animals and genome-wide gene expression data on six tissues, we identified a high proportion (18%) of sample mix-ups in the genotype data. Local expression quantitative trait loci (eQTL; genetic loci influencing gene expression) with extremely large effect were used to form a classifier to predict an individual's eQTL genotype based on expression data alone. By considering multiple eQTL and their related transcripts, we identified numerous individuals whose predicted eQTL genotypes (based on their expression data) did not match their observed genotypes, and then went on to identify other individuals whose genotypes did match the predicted eQTL genotypes. The concordance of predictions across six tissues indicated that the problem was due to mix-ups in the genotypes (though we further identified a small number of sample mix-ups in each of the six panels of gene expression microarrays). Consideration of the plate positions of the DNA samples indicated a number of off-by-one and off-by-two errors, likely the result of pipetting errors. Such sample mix-ups can be a problem in any genetic study, but eQTL data allow us to identify, and even correct, such problems. Our methods have been implemented in an R package, R/lineup. Copyright © 2015 Author et al.
    Preview · Article · Feb 2014 · G3-Genes Genomes Genetics
  • Source
    Brian Baier · Patricia Hunt · Karl W Broman · Terry Hassold
    [Show abstract] [Hide abstract]
    ABSTRACT: Segregation of chromosomes during the first meiotic division relies on crossovers established during prophase. Although crossovers are strictly regulated so that at least one occurs per chromosome, individual variation in crossover levels is not uncommon. In an analysis of different inbred strains of male mice, we identified among-strain variation in the number of foci for the crossover-associated protein MLH1. We report studies of strains with "low" (CAST/EiJ), "medium" (C3H/HeJ), and "high" (C57BL/6J) genome-wide MLH1 values to define factors responsible for this variation. We utilized immunofluorescence to analyze the number and distribution of proteins that function at different stages in the recombination pathway: RAD51 and DMC1, strand invasion proteins acting shortly after double-strand break (DSB) formation, MSH4, part of the complex stabilizing double Holliday junctions, and the Bloom helicase BLM, thought to have anti-crossover activity. For each protein, we identified strain-specific differences that mirrored the results for MLH1; i.e., CAST/EiJ mice had the lowest values, C3H/HeJ mice intermediate values, and C57BL/6J mice the highest values. This indicates that differences in the numbers of DSBs (as identified by RAD51 and DMC1) are translated into differences in the number of crossovers, suggesting that variation in crossover levels is established by the time of DSB formation. However, DSBs per se are unlikely to be the primary determinant, since allelic variation for the DSB-inducing locus Spo11 resulted in differences in the numbers of DSBs but not the number of MLH1 foci. Instead, chromatin conformation appears to be a more important contributor, since analysis of synaptonemal complex length and DNA loop size also identified consistent strain-specific differences; i.e., crossover frequency increased with synaptonemal complex length and was inversely related to chromatin loop size. This indicates a relationship between recombination and chromatin compaction that may develop as DSBs form or earlier during establishment of the meiotic axis.
    Preview · Article · Jan 2014 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meiotic recombination is sexually dimorphic in most mammalian species, including humans, but the basis for the male:female differences remains unclear. In the present study, we used cytological methodology to directly compare recombination levels between human males and females, and to examine possible sex-specific differences in upstream events of double-strand break (DSB) formation and synaptic initiation. Specifically, we utilized the DNA mismatch repair protein MLH1 as a marker of recombination events, the RecA homologue RAD51 as a surrogate for DSBs, and the synaptonemal complex proteins SYCP3 and/or SYCP1 to examine synapsis between homologs. Consistent with linkage studies, genome-wide recombination levels were higher in females than in males, and the placement of exchanges varied between the sexes. Subsequent analyses of DSBs and synaptic initiation sites indicated similar male:female differences, providing strong evidence that sex-specific differences in recombination rates are established at or before the formation of meiotic DSBs. We then asked whether these differences might be linked to variation in the organization of the meiotic axis and/or axis-associated DNA and, indeed, we observed striking male:female differences in synaptonemal complex (SC) length and DNA loop size. Taken together, our observations suggest that sex specific differences in recombination in humans may derive from chromatin differences established prior to the onset of the recombination pathway.
    Full-text · Article · Dec 2013 · PLoS ONE
  • Source
    Karl W. Broman
    [Show abstract] [Hide abstract]
    ABSTRACT: R/qtl is an R package for mapping quantitative trait loci (genetic loci that contribute to variation in quantitative traits) in experimental crosses. Its development began in 2000. There have been 38 software releases since 2001. The latest release contains 35k lines of R code and 24k lines of C code, plus 15k lines of code for the documentation. Challenges in the development and maintenance of the software are discussed. A key to the success of R/qtl is that it remains a central tool for the chief developer's own research work, and so its maintenance is of selfish importance.
    Preview · Article · Sep 2013

Publication Stats

9k Citations
959.55 Total Impact Points

Institutions

  • 2008-2015
    • University of Wisconsin, Madison
      • • Department of Pediatrics
      • • Department of Biostatistics and Medical Informatics
      Mississippi, United States
  • 2011
    • University of North Carolina at Chapel Hill
      • Department of Computer Science
      North Carolina, United States
  • 2009
    • University of California, San Francisco
      • Department of Epidemiology and Biostatistics
      San Francisco, CA, United States
  • 2000-2009
    • Johns Hopkins University
      • Department of Biostatistics
      Baltimore, Maryland, United States
    • St. Mary's Hospital (WI, USA)
      Madison, Wisconsin, United States
    • Mayo Foundation for Medical Education and Research
      Rochester, Michigan, United States
  • 2003-2008
    • Johns Hopkins Bloomberg School of Public Health
      • Department of Biostatistics
      Baltimore, Maryland, United States
  • 2000-2001
    • Naval Medical Research Center
      Silver Spring, Maryland, United States