Neil Cobelli

Montefiore Medical Center, New York, New York, United States

Are you Neil Cobelli?

Claim your profile

Publications (23)107.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To determine the strain-induced signaling pathways involved in regulating the transactivation of the transcription regulator CITED2 and downstream targets in chondrocytes. Methods: Primary human chondrocytes or C28/I2 chondrocytic cells were subjected to various strain regimes. C57BL/6 mice were subjected to treadmill running. Loss-of-function was carried out using siRNA or inhibitors specific for targeted molecules. mRNA levels were assayed by RT-qPCR, and proteins by Western blotting, immuno-fluorescence, and/or immunohistochemical staining. CITED2 promoter activity was assayed in chondrocytes using wild-type or mutant constructs. Results: Cyclic strain at 5%, 1 Hz induced CITED2 expression and suppressed expression of MMP-1 and -13 at the mRNA and protein levels in human chondrocytes. Abolishing primary cilia through knockdown of IFT88 attenuated CITED2 gene expression and decreased protein levels. Similar effects were observed with inhibitors of extracellular ATP or P2 purinergic receptors, or antagonists of Ca(2+) signaling. Knockdown of IFT88 in articular chondrocytes in vivo diminished treadmill induced-CITED2 expression and upregulated MMPs. Knockdown of HIF1α, Sp1, or deletion of the SSRE in the CITED2 promoter limited cyclic strain-induced transactivation of CITED2. However, the strain induced-transactivation of CITED2 was abolished only upon knockdown of HIF1α, Sp1, and SSRE all together or by loss-of-function of IFT88 or ERK1/2. Conclusions: CITED2 transactivation is a critical event in signaling generated by strain and transduced by primary cilia, extracellular ATP, P2 purinergic receptors, and Ca(2+) signaling. Strain-induced CITED2 transactivation requires HIF1α, Sp1, and an intact SSRE and leads to the downregulation of MMPs such as MMP-1 and MMP-13.
    No preview · Article · Dec 2015 · Osteoarthritis and Cartilage
  • Source
    John A Hardin · Neil Cobelli · Laura Santambrogio
    [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of chronic metabolic diseases, such as diabetes and metabolic syndrome, and oxidative stress, as occurs in chronic inflammatory and degenerative conditions, is the presence of extensive protein post-translational modifications, including glycation, glycoxidation, carbonylation and nitrosylation. These modifications have been detected on structural cartilage proteins in joints and intervertebral discs, where they are known to affect protein folding, induce protein aggregation and, ultimately, generate microanatomical changes in the proteoglycan-collagen network that surrounds chondrocytes. Many of these modifications have also been shown to promote oxidative cleavage as well as enzymatically-mediated matrix degradation. Overall, a general picture starts to emerge indicating that biochemical changes in proteins constitute an early event that compromises the anatomical organization and viscoelasticity of cartilage, thereby affecting its ability to sustain pressure and, ultimately, impeding its overall bio-performance.
    Full-text · Article · Jun 2015 · Nature Reviews Rheumatology

  • No preview · Article · Apr 2015 · Osteoarthritis and Cartilage

  • No preview · Article · Apr 2015 · Osteoarthritis and Cartilage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionEpigallocatechin 3-gallate (EGCG), a polyphenol present in green tea, was shown to exert chondroprotective effects in vitro. In this study, we used a post-traumatic osteoarthritis (OA) mouse model to test whether EGCG could slow the progression of OA and relieve OA-associated pain.MethodsC57BL/6 mice were subjected to surgical destabilization of the medial meniscus (DMM) or sham surgery. EGCG (25 mg/kg) or vehicle control was administered daily for four or eight weeks by intraperitoneal injection starting on the day of surgery. OA severity was evaluated by Safranin O staining and Osteoarthritis Research Society International (OARSI) score, and by immunohistochemical analysis to detect cleaved aggrecan and type II collagen, and expression of proteolytic enzymes matrix metalloproteinase (MMP)-13 and A Disintegrin And Metalloproteinase with Thrombospondin Motifs (ADAMTS5). Real-time polymerase chain reaction (PCR) was performed to characterize the expression of genes critical for articular cartilage homeostasis. During the course of the experiments, tactile sensitivity testing (von Frey test) and open field assays were used to evaluate pain behaviors associated with OA, and expression of pain expression markers and inflammatory cytokines in the dorsal root ganglion (DRG) were determined by real-time PCR.ResultsFour and eight weeks after DMM surgery, the cartilage in EGCG-treated mice exhibited less Safranin O loss and cartilage erosion, and lower OARSI scores compared to vehicle-treated controls, which was associated with reduced staining for aggrecan and type II collagen cleavage epitopes, and reduced staining for MMP-13 and ADAMTS5 in the articular cartilage. Articular cartilage in the EGCG-treated mice also exhibited reduced levels of MMP-1, ¿3, ¿8, ¿13, ADAMTS5, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-¿ mRNA and elevated gene expression of the MMP regulator Cbp/p300 Interacting Transactivator 2 (CITED2). Compared to vehicle controls, mice treated with EGCG exhibited reduced OA-associated pain, as indicated by higher locomotor behavior (i.e. distance traveled). Moreover, expression of chemokine receptor (CCR2), and pro-inflammatory cytokines IL-1ß and TNF-¿ in the DRG were significantly reduced to levels similar to sham-operated animals.Conclusions This study provides the first evidence in an OA animal model that EGCG significantly slows OA disease progression and exerts a palliative effect.
    Full-text · Article · Dec 2014 · Arthritis Research & Therapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Occupational and environmental exposure to Co and Cr has been previously linked to a wide array of inflammatory and degenerative conditions and cancer. Recently, significant health concerns have been raised by the high levels of Cr and Co ions and corrosion products released by biomedical implants. Herein, we set to analyze the biological responses associated with Co and Cr toxicity. Histological, ultrastructural, and elemental analysis, performed on Cr and Co exposed patients reveal the presence of corrosion products, metallic wear debris and metal ions at varying concentrations. Metallic ions and corrosion products were also generated in vitro following macrophage phagocytosis of metal alloys. Ex vivo redox proteomic mapped several oxidatively damaged proteins by Cr(III) and Co(II)-induced Fenton reaction. Importantly, a positive correlation between the tissue amounts of Cr(III) and Co(II) ions and tissue oxidative damage was observed. Immobilized- Cr(III) and Co(II) affinity chromatography indicated that metal ions can also directly bind to several metallo and non-metalloproteins and, as demonstrated for aldolase and catalase, induce loss of their biological function. Altogether, our analysis reveals several biological mechanisms leading to tissue damage, necrosis, and inflammation in patients with Cr and Co-associated adverse local tissue reactions.
    Full-text · Article · Jul 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Occupational and environmental exposure to Co and Cr has been previously linked to a wide array of inflammatory and degenerative conditions and cancer. Recently, significant health concerns have been raised by the high levels of Cr and Co ions and corrosion products released by biomedical implants. Herein, we set to analyze the biological responses associated with Co and Cr toxicity. Histological, ultrastructural, and elemental analysis, performed on Cr and Co exposed patients reveal the presence of corrosion products, metallic wear debris and metal ions at varying concentrations. Metallic ions and corrosion products were also generated in vitro following macrophage phagocytosis of metal alloys. Ex vivo redox proteomic mapped several oxidatively damaged proteins by Cr(III) and Co(II)-induced Fenton reaction. Importantly, a positive correlation between the tissue amounts of Cr(III) and Co(II) ions and tissue oxidative damage was observed. Immobilized- Cr(III) and Co(II) affinity chromatography indicated that metal ions can also directly bind to several metallo and non-metalloproteins and, as demonstrated for aldolase and catalase, induce loss of their biological function. Altogether, our analysis reveals several biological mechanisms leading to tissue damage, necrosis, and inflammation in patients with Cr and Co-associated adverse local tissue reactions.
    Full-text · Article · Jul 2014 · Scientific Reports

  • No preview · Article · Apr 2014 · Osteoarthritis and Cartilage
  • Z. He · D.J. Leong · N.J. Cobelli · H.B. Sun

    No preview · Article · Apr 2014 · Osteoarthritis and Cartilage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals-food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease-offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.
    Full-text · Article · Nov 2013 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging-related oxidative stress has been linked to degenerative modifications in different organs and tissues. Using redox proteomic analysis and illustrative tandem mass spectrometry mapping, we demonstrate oxidative posttranslational modifications in structural proteins of intervertebral discs (IVDs) isolated from aging mice. Increased protein carbonylation was associated with protein fragmentation and aggregation. Complementing these findings, a significant loss of elasticity and increased stiffness was measured in fibrocartilage from aging mice. Studies using circular dichroism and intrinsic tryptophan fluorescence revealed a significant loss of secondary and tertiary structures of purified collagens following oxidation. Collagen unfolding and oxidation promoted both nonenzymatic and enzymatic degradation. Importantly, induction of oxidative modification in healthy fibrocartilage recapitulated the biochemical and biophysical modifications observed in the aging IVD. Together, these results suggest that protein carbonylation, glycation, and lipoxidation could be early events in promoting IVD degenerative changes.
    Full-text · Article · Jul 2013 · Chemistry & biology
  • Source

    Full-text · Article · Apr 2013 · Osteoarthritis and Cartilage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of Accountable Care Organizations is to improve patient outcomes while maximizing the value of the services provided. This will be achieved through the use of performance and quality measures that facilitate efficient, cost-effective, evidence-based care. By creating a network connecting primary care physicians, specialists, rehabilitation facilities and hospitals, patient care should be maximized while at the same time delivering appropriate value for those services provided. The Medicare Shared Savings Program will financially reward ACOs that meet performance standards while at the same time lowering costs. The orthopaedic surgeon can only benefit by understanding how to participate in and negotiate the complexities of these organizations.
    Full-text · Article · Oct 2012 · Current Reviews in Musculoskeletal Medicine
  • Source

    Preview · Article · Apr 2012 · Osteoarthritis and Cartilage
  • Source
    Z. He · D.J. Leong · R.J. Majeska · J.A. Hardin · N.J. Cobelli · H.B. Sun

    Preview · Article · Apr 2012 · Osteoarthritis and Cartilage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosomal functions are contingent on the integrity of the organelle-limiting membrane, whose disruption induces inflammation and cell death. Here we show that phagocytosis of ultrahigh molecular weight polyethylene particles induces damage to the endosomal-limiting membrane and results in the leakage of cathepsins into the cytosol and NLRP3-inflammasome activation. Annexin A2 recruitment to damaged organelles is shown by two-dimensional DIGE protein profiling, endosomal fractionation, confocal analysis of endogenous and annexin A2-GFP transfected cells, and immunogold labelling. Binding experiments, using fluorescent liposomes, confirms annexin A2 recruitment to endosomes containing phagocytosed polyethylene particles. Finally, an increase in cytosolic cathepsins, NLRP3-inflammasome activation, and IL-1 production is seen in dendritic cells from annexin A2-null mice, following exposure to polyethylene particles. Together, the results indicate a functional role of annexin A2 binding to endosomal membranes following organelle destabilization.
    Full-text · Article · Mar 2012 · Nature Communications
  • Daniel J Leong · John A Hardin · Neil J Cobelli · Hui B Sun
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis (OA) is characterized by the breakdown of articular cartilage that is mediated in part by increased production of matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS), enzymes that degrade components of the cartilage extracellular matrix. Efforts to design synthetic inhibitors of MMPs/ADAMTS have only led to limited clinical success. In addition to pharmacologic therapies, physiologic joint loading is widely recommended as a nonpharmacologic approach to improve joint function in osteoarthritis. Clinical trials report that moderate levels of exercise exert beneficial effects, such as improvements in pain and physical function. Experimental studies demonstrate that mechanical loading mitigates joint destruction through the downregulation of MMPs/ADAMTS. However, the molecular mechanisms underlying these effects of physiologic loading on arthritic joints are not well understood. We review here the recent progress on mechanotransduction in articular joints, highlighting the mediators and pathways in the maintenance of cartilage integrity, especially in the prevention of cartilage degradation in OA.
    No preview · Article · Dec 2011 · Annals of the New York Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Joint replacement surgery is one of the success stories of modern medicine, restoring mobility, diminishing pain and improving the overall quality of life for millions of people. Unfortunately, wear of these prostheses over time generates debris, which activates an innate immune response that can ultimately lead to periprosthetic resorption of bone (osteolysis) and failure of the implant. Over the past decade, the biological interactions between the particulate debris from various implant materials and the immune system have begun to be better understood. The wear debris induces a multifaceted immune response encompassing the generation of reactive oxygen species and damage-associated molecular patterns, Toll-like receptor signaling and NALP3 inflammasome activation. Acting alone or in concert, these events generate chronic inflammation, periprosthetic bone loss and decreased osteointegration that ultimately leads to implant failure.
    Full-text · Article · Sep 2011 · Nature Reviews Rheumatology
  • Source
    N. Trentacosta · I. M. Levy · N. J. Cobelli · J. A. Hardin

    Preview · Article · Oct 2010 · Osteoarthritis and Cartilage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoclasts are resident cells of the bone that are primarily involved in the physiological and pathological remodeling of this tissue. Mature osteoclasts are multinucleated giant cells that are generated from the fusion of circulating precursors originating from the monocyte/macrophage lineage. During inflammatory bone conditions in vivo, de novo osteoclastogenesis is observed but it is currently unknown whether, besides increased osteoclast differentiation from undifferentiated precursors, other cell types can generate a multinucleated giant cell phenotype with bone resorbing activity. In this study, an animal model of calvaria-induced aseptic osteolysis was used to analyze possible bone resorption capabilities of dendritic cells (DCs). We determined by FACS analysis and confocal microscopy that injected GFP-labeled immature DCs were readily recruited to the site of osteolysis. Upon recruitment, the cathepsin K-positive DCs were observed in bone-resorbing pits. Additionally, chromosomal painting identified nuclei from female DCs, previously injected into a male recipient, among the nuclei of giant cells at sites of osteolysis. Finally, osteolysis was also observed upon recruitment of CD11c-GFP conventional DCs in Csf1r(-/-) mice, which exhibit a severe depletion of resident osteoclasts and tissue macrophages. Altogether, our analysis indicates that DCs may have an important role in bone resorption associated with various inflammatory diseases.
    Full-text · Article · Aug 2010 · The Journal of Immunology