M. K. Vollmer

Empa - Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Zurich, Switzerland

Are you M. K. Vollmer?

Claim your profile

Publications (126)296.5 Total impact

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Carbon tetrachloride (CCl4) is a long-lived radiatively-active compound able to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer, the last two decades have seen a sharp decrease in its large scale emissive use with a consequent decline of its atmospheric mole fractions. However, the Montreal Protocol restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived by reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006–2014 were 2.3 (± 0.8) Gg yr−1, with an average decreasing trend of 7.3 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of 25 %. The inversion was also able to allow the localisation of emission "hot-spots" in the domain, with major source areas in Southern France, Central England (UK) and Benelux (Belgium, The Netherlands, Luxembourg), where most of industrial scale production of basic organic chemicals are located. According to our results, European emissions correspond to 4.0 % of global emissions for 2006–2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates.
    Full-text · Article · Apr 2016 · Atmospheric Chemistry and Physics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In order to better support the monitoring of greenhouse gases in the atmosphere, we develop a method to produce reference gas mixtures for fluorinated gases (F-gases, i.e. gases containing fluorine atoms) in a SI-traceable way, meaning that the amount of substance fraction in mole per mole is traceable to SI-units. These research activities are conducted in the framework of the HIGHGAS and AtmoChem-ECV projects. First, single-component mixtures in synthetic air at ∼85 nmol/mol (ppb) are generated for HFC-125 (pentaflu-oroethane, a widely used HFC) and HFC-1234yf (2,3,3,3-tetrafluoropropene, a car air conditioner fluid of growing importance). These mixtures are first dynamically produced by permeation: a permeator containing the pure substance loses mass linearly over time under a constant gas flow, in the permeation chamber of a magnetic suspension balance, which is regularly calibrated. This primary mixture is then pressurised into Silconert2000-coated stainless steel cylinders by cryo-filling. In a second step these mixtures are dynamically diluted using 2 subsequent dilution steps piloted by mass flow controllers (MFC) and pressure controllers. The assigned mixture concentration is calculated mostly based on the permeator mass loss, on the carrier gas purity and on the MFCs flows. An uncertainty budget is presented, resulting in an expanded uncertainty of 2% for the HFC-125 reference mixture and of 2.5% for the HFC-1234yf mixture (95% confidence interval). The final gas, with near-atmospheric concentration (17.11 pmol/mol for HFC-125, 2.14 pmol/mol for HFC-1234yf) is then measured with Medusa-GC/MS technology against standards calibrated on existing reference scales. The assigned values of the dynamic standards are in excellent agreement with measurements vs the existing reference scales, SIO-14 from the Scripps Institution of Oceanography for HFC-125 and Empa-2013 for HFC-1234yf. Moreover, the Medusa-GC/MS measurements show the excellent purity of the SI-traceable standards , i.e. the absence of potential contamination from other F-gases to a very low level. These results therefore suggest that this SI-traceable and dynamic method based on permeation and dynamic dilution is a valuable and complementary alternative to the commonly used gravimetric techniques. Finally, we present plans for the future development of a portable generator to allow for an easy on-site calibration with SI-traceable, multi-component reference gas mixtures.
    Full-text · Conference Paper · Apr 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in the reduced spectral resolution nominal observation mode. The data cover the period from January 2005 to April 2012 and the altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of modelled spectra to the measured limb spectral radiances. The spectral ν4-band at 816.5 ± 13 cm−1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The rate of linear growth in the lower latitudes lower stratosphere was about 6 to 7 pptv year−1 in the period 2005–2012. The profiles obtained were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and cryosampler balloon measurements. Between 13 and 22 km, average agreement within −3 to +5 pptv (MIPAS – ACE) with ACE-FTS v3.5 profiles is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15–50 pptv below 24 km and less than 10 pptv above 28 km. MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from the NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data. This is attributed to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10°-latitude/1-to-2-km-altitude bins. The relative linear variation was always positive, with relative increases of 40–70 % decade−1 in the tropics and global lower stratosphere, and up to 120 % decade−1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. Asian HCFC-22 emissions have become the major source of global upper tropospheric HCFC-22. In the upper troposphere, monsoon air, rich in HCFC-22, is instantaneously mixed into the tropics. In the middle stratosphere, between 20 and 30 km, the observed trend is inconsistent with the trend at the surface (corrected for the age of stratospheric air), hinting at circulation changes. There exists a stronger positive trend in HCFC-22 in the Southern Hemisphere and a more muted positive trend in the Northern Hemisphere, implying a potential change in the stratospheric circulation over the observation period.
    Full-text · Article · Mar 2016 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract] ABSTRACT: We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900–906 cm−1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm−2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=1/1012) per year for the mean tropospheric mixing ratio, at the 2−σ confidence level. Over the subsequent time period (2010–2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite.
    No preview · Article · Mar 2016 · Journal of Quantitative Spectroscopy and Radiative Transfer
  • [Show abstract] [Hide abstract] ABSTRACT: We report ground-based atmospheric measurements and emission estimates for the halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2) from the AGAGE (Advanced Global Atmospheric Gases Experiment) and the NOAA (National Oceanic and Atmospheric Administration) global networks. We also include results from archived air samples in canisters and from polar firn in both hemispheres, thereby deriving an atmospheric record of nearly nine decades (1930s to present). All three halons were absent from the atmosphere until ∼1970, when their atmospheric burdens started to increase rapidly. In recent years H-1211 and H-2402 mole fractions have been declining, but H-1301 has continued to grow. High-frequency observations show continuing emissions of H-1211 and H-1301 near most AGAGE sites. For H-2402 the only emissions detected derive from the region surrounding the Sea of Japan / East Sea. Based on our observations we derive global emissions using two different inversion approaches. Emissions for H-1211 declined from a peak of 11 kt yr−1 (late 1990s) to 3.9 kt yr−1 at the end of our record (mean of 2013 – 2015), for H-1301 from 5.4 kt yr−1 (late 1980s) to 1.6 kt yr−1, and for H-2402 from 1.8 kt yr−1 (late 1980s) to 0.38 kt yr−1. Yearly summed halon emissions have decreased substantially, nevertheless since 2000 they have accounted for ∼30% of the emissions of all major anthropogenic ozone depletion substances, when weighted by Ozone Depletion Potentials.
    No preview · Article · Mar 2016 · Journal of Geophysical Research Atmospheres
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and 1,1,2-trichlorotrifluoroethane (CFC-113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC-22) and 1-chloro-1,1-difluoroethane (HCFC-142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC-134a), all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%.
    Full-text · Article · Nov 2015
  • [Show abstract] [Hide abstract] ABSTRACT: Hydrochlorofluorocarbon HCFC-133a (CF3CH2Cl) is an anthropogenic compound whose consumption for emissive use is restricted under the Montreal Protocol. A recent study showed rapidly increasing atmospheric abundances and emissions. We report that, following this rise, the atmospheric abundance and emissions have declined sharply in the past three years. We find a Northern Hemisphere HCFC-133a increase from 0.13 ppt (dry air mole fraction in parts-per-trillion) in 2000 to 0.50 ppt in 2012–mid-2013 followed by an abrupt reversal to ∼0.44 ppt by early 2015. Global emissions derived from these observations peaked at 3.1 kt in 2011, followed by a rapid decline of ∼0.5 kt yr−2 to 1.5 kt yr−1 in 2014. Sporadic HCFC-133a pollution events are detected in Europe from our high-resolution HCFC-133a records at three European stations, and in Asia from samples collected in Taiwan. European emissions are estimated to be <0.1 kt yr−1 although emission hotspots were identified in France.
    No preview · Article · Oct 2015 · Geophysical Research Letters
  • [Show abstract] [Hide abstract] ABSTRACT: The 1,1,1,2-tetrafluoroethane (HFC-134a), an important alternative to CFC-12 in accordance with the Montreal Protocol on Substances that Deplete the Ozone Layer, is a high Global Warming Potential (GWP) greenhouse gas. Here we evaluate variations in global and regional HFC-134a emissions and emission trends, from 1995 to 2010, at a relatively high spatial and temporal (3.75° in longitude × 2.5° in latitude and 8-day) resolution, using surface HFC-134a measurements. Our results show a progressive increase of global HFC-134a emissions from 19 ± 2 Gg/yr in 1995 to 167 ± 5 Gg/yr in 2010, with both a slowdown in developed countries and a 20 %/yr increase in China since 2005. A seasonal cycle is also seen since 2002, which becomes enhanced over time, with larger values during the boreal summer.
    No preview · Article · Oct 2015 · Journal of Geophysical Research Atmospheres
  • Source
    Full-text · Dataset · Sep 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: High frequency, ground-based, in situ measurements from eleven globally-distributed sites covering 1994–2014, combined with measurements of archived air samples dating from 1978 onward and atmospheric transport models, have been used to estimate the growth of 1,1-difluoroethane (HFC-152a, CH3CHF2) mole fractions in the atmosphere and the global emissions required to derive the observed growth. HFC-152a is a significant greenhouse gas but since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). HFC-152a has exhibited substantial atmospheric growth since the first measurements reaching a maximum annualised global growth rate of 0.81 ± 0.05 ppt yr−1 in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annualised rate of growth has slowed to 0.38 ± 0.04 ppt yr−1 in 2010 with a further decline to an average rate of change in 2013–2014 of −0.06 ± 0.05 ppt yr−1. The average Northern Hemisphere (NH) mixing ratio in 1994 was 1.2 ppt rising to a mixing ratio of 10.2 ppt in December 2014. Average annual mixing ratios in the Southern Hemisphere (SH) in 1994 and 2014 were 0.34 and 4.4 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 ± 5.6 Gg yr−1 in 1994 to a maximum of 54.4 ± 17.1 Gg yr−1 in 2011, declining to 52.5 ± 20.1 Gg yr−1 in 2014 or 7.2 ± 2.8 Tg-CO2 eq yr−1. Analysis of mixing ratio enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia and Europe. Global HFC emissions (so called "bottom up" emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate of "bottom-up" global emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.
    Full-text · Article · Aug 2015 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract] ABSTRACT: We report the first multiyear atmospheric record of HCFC-31 (CH2ClF), based on flask samples and in situ analyses of air from both hemispheres. Although HCFC-31 has never been produced in large amounts, observed mole fractions in the Northern Hemisphere increased from 2000 onward, reaching 170 ppq (parts per quadrillion, 10–15) in 2011-2012 before decreasing rapidly. By combining our observations with a two-dimensional atmospheric chemistry-transport model, we infer an increase in global emissions from 240 t yr–1 in 2000 to 840 t yr–1 in 2011-2012, followed by a relatively fast decline to 570 t yr–1 in 2014. Emissions of HCFC-31 originate most probably from intermediate product release during the manufacturing process of HFC-32 (CH2F2). The rapid decline in recent years could be due to changes in production methods rather than declines in diffusive sources such as landfills or HCFC-31 contaminations in merchandised HFC-32.
    No preview · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements within the framework of Global Atmosphere Watch (GAW) and European Monitoring and Evaluation Programme (EMEP) was assessed with respect to the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) and GAW data quality objectives (DQOs). Compared to previous intercomparisons the DQOs of ACTRIS are much more demanding with deviations to a reference value of less than 5% and repeatability of better than 2% for mole fractions above 0.1 nmol mol−1. The participants were asked to measure both a 30 component NMHC mixture in nitrogen (NMHC_N2) at approximately 1 nmol mol−1 and whole air (NMHC_air), following a standardised operation procedure including zero- and calibration gas measurements. Furthermore, they had to report details on their instruments and they were asked to assess measurement uncertainties. The NMHCs were analysed either by gas chromatography-flame ionisation detection or gas chromatography-mass spectrometer methods. Most systems performed well for the NMHC_N2 measurements (88% of the reported values were within the GAW DQOs and even 58% within the ACTRIS DQOs). For NMHC_air generally more frequent and larger deviations to the assigned values were observed compared to NMHC_N2 (77% of the reported values were within the GAW DQOs, but only 48% within the ACTRIS DQOs). Important contributors to the poorer performance in NMHC_air compared to NMHC_N2 were a more complex matrix and a larger span of NMHC mole fractions (0.03–2.5 nmol mol−1). Issues, which affected both NMHC mixtures, are the usage of direct vs. two-step calibration, breakthrough of C2–C3 hydrocarbons, blank values in zero-gas measurements (especially for those systems using a Nafion® Dryer), adsorptive losses of aromatic compounds, and insufficient chromatographic resolution. Essential for high-quality results are experienced operators, a comprehensive quality assurance and quality control, well characterised systems, and sufficient man-power to operate the systems and evaluate the data.
    Full-text · Article · Jul 2015 · Atmospheric Measurement Techniques
  • [Show abstract] [Hide abstract] ABSTRACT: We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in reduced spectral resolution nominal mode in the period from January 2005 to April 2012 from version 5.02 level-1b spectral data and covering an altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of measured limb spectral radiances to modelled spectra. The spectral ν4-band at 816.5 ± 13 cm−1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The linear growth rate in the lower latitudes lower stratosphere was about 6 to 7 pptv yr−1 in the period 2005–2012. The obtained profiles were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and in situ cryosampler balloon measurements. Between 13 and 22 km, average agreement within −3 to +5 pptv (MIPAS–ACE) with ACE-FTS v3.5 profiles is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15–50 pptv below 24 km and less than 10 pptv above 28 km. Obtained MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data, probably due to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10° latitude/1 to 2 km altitude bins. The relative linear variation was always positive, with relative increases of 40–70% decade−1 in the tropics and global lower stratosphere, and up to 120% decade−1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. In the middle stratosphere between 20 and 30 km, the observed trend is not consistent with the age of stratospheric air-corrected trend at ground, but stronger positive at the Southern Hemisphere and less strong increasing in the Northern Hemisphere, hinting towards changes in the stratospheric circulation over the observation period.
    No preview · Article · May 2015 · Atmospheric Chemistry and Physics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We have developed a chemical mechanism describing the tropospheric degradation of chlorine containing very short-lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS ( ) between 2005 and 2013. By constraining the model with surface measurements of chloroform (CHCl3), dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), trichloroethene (C2HCl3), and 1,2-dichloroethane (CH2ClCH2Cl), we infer a 2013 mixing ratio of 123 parts per trillion (ppt). Stratospheric injection of source gases dominates this supply, accounting for ∼83% of the total. The remainder comes from VSLS-derived organic products, phosgene (COCl2, 7%) and formyl chloride (CHClO, 2%), and also hydrogen chloride (HCl, 8%). Stratospheric increased by ∼52% between 2005 and 2013, with a mean growth rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH2Cl2—the most abundant chlorinated VSLS not controlled by the Montreal Protocol.
    Full-text · Article · May 2015 · Geophysical Research Letters
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175–221) Tg-CO2-eq⋅y–1 in 2007 to 275 (246–304) Tg-CO2-eq⋅y–1 in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63–95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together.
    Full-text · Article · Apr 2015 · Proceedings of the National Academy of Sciences
  • [Show abstract] [Hide abstract] ABSTRACT: Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097 ppt, 0.30 ppt, and 0.13 ppt (parts-per-trillion, 10-12 in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ±0.6 million t CO2-equivalent in 2014 of which ≈80 % stems from desflurane. We also report on halothane, a previously widely used anesthetic Its global mean mole fraction has declined to 9.2 ppq (parts-per-quadrillion, 10-15) by 2014. However the inferred present usage is still 280 ±120 t yr-1.
    No preview · Article · Feb 2015
  • Martin K Vollmer · Stefan Reimann · Matthias Hill · Dominik Brunner
    [Show abstract] [Hide abstract] ABSTRACT: Halogenated alkenes are a class of anthropogenic substances, which replace ozone-depleting substances and long-lived greenhouse gases in the foam-blowing, refrigeration, and solvent sectors. We report the first multi-year atmospheric measurements of the hydrofluorocarbons HFC-1234yf (2,3,3,3-tetrafluoroprop-1-ene, CF3CF=CH2) and HFC-1234ze(E) (E-1,3,3,3-tetrafluoroprop-1-ene, trans--CF3CH=CHF), and the hydrochlorofluorocarbon HCFC-1233zd(E) (E-1-chloro-3,3,3-trifluoroprop-1-ene trans-CF3CH=CHCl) from the high altitude observatory at Jungfraujoch and from urban Dubendorf (Switzerland). When observations started in 2011 HFC-1234yf was undetectable at Jungfraujoch (mole fractions <0.003 ppt, parts-per-trillion, 10(-12)) but since then the percentage of measurements with detectable mole fractions has steadily increased to 4.5 % in 2014. By contrast, in 2014 HFC-1234ze(E) was detectable in half of our samples at Jungfraujoch and in all samples at Dubendorf demonstrating the wide use of this compound within the air mass footprints of the stations. Our back trajectory analysis for the Jungfraujoch observations suggests high emission strength of HFC-1234ze(E) in the Belgium/Netherlands region. HCFC-1233zd(E) is present at very low mole fractions (typically <0.03 ppt) at both stations, and features pronounced seasonality and a general absence of pollution events during our 2013--2014 measurements. This is indicative of the presence of significant emissions from source locations outside the footprints of the two stations. Based on a simple one-box model calculation we estimate globally increasing HCFC-1233zd(E) emissions from 0.2 Gg yr(-1) in 2013 to 0.5 Gg yr(-1) for 2014.
    No preview · Article · Jan 2015 · Environmental Science and Technology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant hydrofluorocarbons (HFCs) respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 +/- 0.04 and 0.7 +/- 0.02 mW m(-2) in 2012 respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 +/- 0.3 ppt (1 sigma) in the lower troposphere and its growth rate was 1.4 +/- 0.04 ppt yr(-1); HFC-32 had a global mean mole fraction of 6.2 +/- 0.2 ppt and a growth rate of 1.1 +/- 0.04 ppt yr(-1) in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 +/- 3 Gg yr(-1) of HFC-143a and 21 +/- 11 Gg yr(-1) of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing by 7 +/- 5% yr(-1) for HFC-143a and 14 +/- 11% yr(-1) for HFC-32.
    Full-text · Article · Sep 2014 · Atmospheric Chemistry and Physics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Methyl chloroform (MCF) is a man-made chlorinated solvent contributing to the destruction of stratospheric ozone and is controlled under the "Montreal Protocol on Substances that Deplete the Ozone Layer" and its amendments, which called for its phase-out in 1996 in developed countries and 2015 in developing countries. Long-term, high-frequency observations of MCF carried out at three European sites show a constant decline in the background mixing ratios of MCF. However, we observe persistent non-negligible mixing ratio enhancements of MCF in pollution episodes, suggesting unexpectedly high ongoing emissions in Europe. In order to identify the source regions and to give an estimate of the magnitude of such emissions, we have used a Bayesian inversion method and a point source analysis, based on high-frequency long-term observations at the three European sites. The inversion identified southeastern France (SEF) as a region with enhanced MCF emissions. This estimate was confirmed by the point source analysis. We performed this analysis using an 11-year data set, from January 2002 to December 2012. Overall, emissions estimated for the European study domain decreased nearly exponentially from 1.1 Gg yr−1 in 2002 to 0.32 Gg yr−1 in 2012, of which the estimated emissions from the SEF region accounted for 0.49 Gg yr−1 in 2002 and 0.20 Gg yr−1 in 2012. The European estimates are a significant fraction of the total semi-hemisphere (30–90° N) emissions, contributing a minimum of 9.8% in 2004 and a maximum of 33.7% in 2011, of which on average 50% are from the SEF region. On the global scale, the SEF region is thus responsible for a minimum of 2.6% (in 2003) and a maximum of 10.3% (in 2009) of the global MCF emissions.
    Full-text · Article · Sep 2014 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract] ABSTRACT: available.
    No preview · Article · May 2014 · Atmospheric Chemistry and Physics

Publication Stats

1k Citations
296.50 Total Impact Points

Institutions

  • 2006-2015
    • Empa - Swiss Federal Laboratories for Materials Science and Technology
      • Laboratory for Air Pollution/Environmental Technology
      Duebendorf, Zurich, Switzerland
  • 2007
    • Bundesanstalt für Materialforschung und -prüfung
      Berlín, Berlin, Germany
  • 2002
    • Max Planck Institute for Chemistry
      Mayence, Rheinland-Pfalz, Germany
  • 2001-2002
    • University of California, San Diego
      • Scripps Institution of Oceanography (SIO)
      San Diego, California, United States