Jiajia Wang

University of Mississippi, University, MS, United States

Are you Jiajia Wang?

Claim your profile

Publications (3)12.19 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The marine environment is a valuable resource for drug discovery due to its diversity of life and associated secondary metabolites. However, there is very little published data on the potential application of marine natural products to treat neuropsychiatric disorders. Many natural products derived from chemically defended organisms in the marine environment have pharmacophores related to serotonin or clinically utilized antidepressant drugs. Therefore, in the present study, compounds selected for their structural similarity to serotonin or established antidepressants were evaluated for antidepressant-like activity using the forced swim and tail suspension tests in mice. The antidepressant positive controls, citalopram (selective serotonin reuptake inhibitor) and despiramine (tricyclic antidepressant) both dose-dependently reduced immobility time in the forced swim and tail suspension tests. Two marine natural product compounds tested, aaptamine and 5,6-dibromo-N,N-dimethyltryptamine, also produced significant antidepressant-like activity in the forced swim test. In the tail suspension test, the antidepressant-like effects of 5,6-dibromo-N,N-dimethyltryptamine were confirmed, whereas aaptamine failed to produce significant results. None of the tested compounds induced hyperlocomotion, indicating that nonspecific stimulant effects could not account for the observed antidepressant-like actions of the compounds. These studies highlight the potential to rationally select marine derived compounds for treating depression and other neuropsychiatric disorders.
    Full-text · Article · Apr 2008 · Pharmacology Biochemistry and Behavior
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many antidepressant drugs interact with sigma receptors and accumulating evidence suggests that these proteins mediate antidepressant-like effects in animals and humans. sigma Receptors are localized in brain regions affected in depression, further strengthening the hypothesis that they represent logical drug development targets. In this study, two novel sigma receptor agonists (UMB23, UMB82) were evaluated for antidepressant-like activity in mice. First, radioligand binding studies confirmed that the novel compounds had preferential affinity for sigma receptors. Second, the forced swim test, a well established animal model for screening potential antidepressant drugs, showed that both compounds dose-dependently reduced immobility time. The sigma receptor antagonist BD1047 attenuated the antidepressant-like effects of UMB23 and UMB82. Third, locomotor activity suggested that the effects of UMB23 and UMB82 in the forced swim test were not due to non-specific motor activating effects. Together, the data provide further evidence that sigma receptor agonists represent a possible new class of antidepressant medication.
    No preview · Article · Dec 2007 · European Neuropsychopharmacology

  • No preview · Conference Paper · Apr 2007

Publication Stats

48 Citations
12.19 Total Impact Points


  • 2007-2008
    • University of Mississippi
      • Department of Pharmacology
      University, MS, United States