Catherine Espaillat

Boston University, Boston, Massachusetts, United States

Are you Catherine Espaillat?

Claim your profile

Publications (96)

  • Article · Aug 2016 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract] ABSTRACT: Transitional discs are a class of circumstellar discs around young stars with extensive clearing of dusty material within their inner regions on 10s of au scales. One of the primary candidates for this kind of clearing is the formation of planet(s) within the disc that then accrete or clear their immediate area as they migrate through the disc. Our sample included eight transitional discs. Using the Keck/NIRC2 instrument we utilised the Sparse Aperture Masking (SAM) interferometry technique to search for asymmetries indicative of ongoing planet formation. We searched for close-in companions using both model fitting and interferometric image reconstruction techniques. Using simulated data, we derived diagnostics that helped us to distinguish between point sources and extended asymmetric disc emission. In addition, we investigated the degeneracy between the contrast and separation that appear for marginally resolved companions. We found FP Tau to contain a previously unseen disc wall, and DM Tau, LkHa 330, and TW Hya to contain an asymmetric signal indicative of point source-like emission. We placed upper limits on the contrast of a companion in RXJ1842.9-3532 and V2246 Oph. We ruled the asymmetry signal in RXJ1615.3-3255 and V2062 Oph to be false positives. In the cases where our data indicated a potential companion we computed estimates for the value of $M_c \dot M_c$ and found values in the range of $10^{-5} - 10^{-3} M^2_J yr^{-1}$. We found significant asymmetries in four targets. Of these, three were consistent with companions. We resolved a previously unseen gap in the disc of FP Tau extending inwards from approximately 10 au.
    Article · Aug 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to about 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.
    Full-text Conference Paper · Aug 2016
  • Joseph E. Rodriguez · Keivan G. Stassun · Phillip Cargile · [...] · Catherine C. Espaillat
    [Show abstract] [Hide abstract] ABSTRACT: In some planet formation theories, protoplanets grow gravitationally within a young star's protoplanetary disk, a signature of which may be a localized disturbance in the disk's radial and/or vertical structure. Using time-series photometric observations by the Kilodegree Extremely Little Telescope South (KELT-South) project and the All-Sky Automated Survey for SuperNovae (ASAS-SN), combined with archival observations, we present the discovery of two extended dimming events of the young star, DM Ori. This young system faded by $\sim$1.5 mag from 2000 March to 2002 August and then again in 2013 January until 2014 September (depth $\sim$1.7 mag). We constrain the duration of the 2000-2002 dimming to be $<$ 860 days, and the event in 2013-2014 to be $<$ 585 days, separated by $\sim$12.5 years. A model of the spectral energy distribution (SED) indicates a large infrared excess consistent with an extensive circumstellar disk. Using basic kinematic arguments, we propose that DM Ori is likely being periodically occulted by a feature (possibly a warp or perturbation) in its circumstellar disk. In this scenario, the occulting feature is located $>$6 AU from the host star, moving at $\sim$14.6 km/s, and is $\sim$4.9 AU in width. This localized structure may indicate a disturbance such as may be caused by a protoplanet early in its formation.
    Article · Jul 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Photoevaporation is probably the main agent for gas dispersal during the last stages of protoplanetary disk evolution. However, the overall mass loss rate in the photoevaporative wind and its driving mechanism are still not well understood. Here we report multi-configuration Very Large Array observations at 0.7, 3, and 5 cm towards the transitional disk of GM Aur. Our radio continuum observations allow us to image and spatially resolve, for the first time, the three main components at work in this stage of the disk evolution: the disk of dust, the ionized radio jet perpendicular to it, and the photoevaporative wind arising from the disk. The mass loss rate inferred from the flux density of the radio jet is consistent with the ratio between ejection and accretion rates found in younger objects, suggesting that transitional disks can power collimated ejections of material apparently following the same physical mechanisms as much younger protostars. Our results indicate that extreme-UV (EUV) radiation is the main ionizing mechanism of the photoevaporative wind traced by the free-free emission. The required low EUV photon luminosity of $\sim6\times10^{40}$ s$^{-1}$ would produce a photoevaporation rate of only $\dot{M}_{\rm w,EUV}\simeq1.3\times10^{-10}~M_{\odot}$ yr$^{-1}$. Therefore, other mechanisms are required to disperse the disk in the timescale imposed by observations.
    Full-text Article · Jul 2016 · The Astrophysical Journal
  • [Show abstract] [Hide abstract] ABSTRACT: We present our investigation of 319 Class II objects in Orion A observed by $Spitzer$/IRS. We also present the follow-up observation of 120 of these Class II objects in Orion A from IRTF/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks to those of Taurus disks with respect to position within Orion A (ONC and L1641) and to the sub-groups by the inferred radial structures, such as transitional disks vs. radially continuous full disks. Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) Mass accretion rate of transitional disks and that of radially continuous full disks are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in ONC compared to those in Taurus, based on analysis of the shape index of the 10 $\mu$m silicate feature ($F_{11.3}/F_{9.8}$). (4) The 20-31 $\mu$m continuum spectral index tracks the projected distance from the most luminous Trapezium star, $\theta^{1}$ Ori C. A possible explanation is the effect of UV ablation of the outer part of the disks.
    Article · Apr 2016 · The Astrophysical Journal Supplement Series
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present a time-variability study of young stellar objects in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 micron with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability project (YSOVAR). We have collected light curves for 181 cluster members over 40 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability time scales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer time scales than the X-ray undetected members.
    Full-text Article · Jul 2015 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0.10" (13 AU) out to 0.50" (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using SED modeling (15 AU). We detected a candidate point source companion 1.08" northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 deg), 0.01 Msun disk that has a partially depleted inner gap from the dust sublimation radius out to ~8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to variety of mechanisms.
    Full-text Article · Jul 2015 · The Astronomical Journal
  • C. Espaillat · S. Andrews · D. Powell · [...] · P. D'Alessio
    [Show abstract] [Hide abstract] ABSTRACT: Resolved submillimeter imaging of transitional disks is increasingly revealing the complexity of disk structure. Here we present the first high-resolution submillimeter image of a recently identified transitional disk around IRAS 04125+2902 in the Taurus star-forming region. We measure an inner disk hole of ~20 AU around IRAS 04125+2902 by simultaneously modeling new 880 micron Submillimeter Array (SMA) data along with an existing spectral energy distribution supplemented by new Discovery Channel Telescope (DCT) photometry. We also constrain the outer radius of the dust disk in IRAS~04125+2902 to ~50-60 AU. Such a small dust disk could be attributed to initial formation conditions, outward truncation by an unseen companion, or dust evolution in the disk. Notably, the dust distribution of IRAS 04125+2902 resembles a narrow ring (delta R ~ 35 AU) composed of large dust grains at the location of the disk wall. Such narrow dust rings are also seen in other transitional disks and may be evidence of dust trapping in pressure bumps, possibly produced by planetary companions. More sensitive submillimeter observations of the gas are necessary to further probe the physical mechanisms at work in shaping the spatial distribution of large dust in this disk. Interestingly, the IRAS 04125+2902 disk is significantly fainter than other transitional disks that have been resolved at submillimeter wavelengths, hinting that more objects with large disk holes may exist at the faint end of the submillimeter luminosity distribution that await detection with more sensitive imaging telescopes.
    Article · Jun 2015 · The Astrophysical Journal
  • Laura Ingleby · Catherine Espaillat · Nuria Calvet · [...] · Elizabeth Champney
    [Show abstract] [Hide abstract] ABSTRACT: We analyze 3 epochs of ultraviolet (UV), optical and near-infrared (NIR) observations of the Taurus transitional disk GM Aur using the Hubble Space Telescope Imaging Spectrograph (STIS) and the Infrared Telescope Facility SpeX spectrograph. Observations were separated by one week and 3 months in order to study variability over multiple timescales. We calculate accretion rates for each epoch of observations using the STIS spectra and find that those separated by one week had similar accretion rates (~1E-8 solar masses/yr) while the epoch obtained 3 months later had a substantially lower accretion rate (~4E-9 solar masses/yr). We find that the decline in accretion rate is caused by lower densities of material in the accretion flows, as opposed to a lower surface coverage of the accretion columns. During the low accretion rate epoch we also observe lower fluxes at both far UV (FUV) and IR wavelengths, which trace molecular gas and dust in the disk, respectively. We find that this can be explained by a lower dust and gas mass in the inner disk. We attribute the observed variability to inhomogeneities in the inner disk, near the corotation radius, where gas and dust may co-exist near the footprints of the magnetospheric flows. These FUV--NIR data offer a new perspective on the structure of the inner disk, the stellar magnetosphere, and their interaction.
    Article · Apr 2015 · The Astrophysical Journal
  • Catherine Espaillat · Laura Ingleby · Jesus Hernandez · Nuria Calvet
    [Show abstract] [Hide abstract] ABSTRACT: Previous Spitzer infrared observations of disks around young, low-mass pre-main sequence stars have given us an unprecedented look at dust evolution in young objects, particularly in disks which were revealed to have large inner holes (i.e., the transitional disks). Despite this ground-breaking progress in studying the dust in young disks, the relationship between the dust and gas properties in the inner disk remains essentially unknown. Here we propose to quantify the variability of both the dust and gas in the transitional disk surrounding GM Aur to study how or if accretion onto the star is tied to inhomogeneities in the inner disk. To do this, we will use simultaneous Spitzer, HST, and Swift observations to constrain the IR, UV, and X-ray emission of GM Aur and provide a picture of the interaction between dust and gas in the inner ~0.5-1 AU of the disk down to the stellar surface.
    Article · Nov 2014
  • Source
    M. K. McClure · C. Espaillat · N. Calvet · [...] · L. I. Cleeves
    [Show abstract] [Hide abstract] ABSTRACT: We present Herschel Space Observatory PACS spectra of T Tauri stars, in which we detect amorphous and crystalline water ice features. Using irradiated accretion disk models, we determine the disk structure and ice abundance in each of the systems. Combining a model-independent comparison of the ice feature strength and disk size with a detailed analysis of the model ice location, we estimate that the ice emitting region is at disk radii >30AU, consistent with a proto-Kuiper belt. Vertically, the ice emits most below the photodesorption zone, consistent with Herschel observations of cold water vapor. The presence of crystallized water ice at a disk location a) colder than its crystallization temperature and b) where it should have been re-amorphized in ~1 Myr suggests that localized generation is occurring; the most likely cause appears to be micrometeorite impact or planetesimal collisions. Based on simple tests with UV models and different ice distributions, we suggest that the SED shape from 20 to 50 micron may probe the location of the water ice snow line in the disk upper layers. This project represents one of the first extra-solar probes of the spatial structure of the cometary ice reservoir thought to deliver water to terrestrial planets.
    Full-text Article · Nov 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present a spectroscopic survey of the stellar population of the Sigma Orionis cluster. We have obtained spectral types for 340 stars. Spectroscopic data for spectral typing come from several spectrographs with similar spectroscopic coverage and resolution. More than a half of stars of our sample are members confirmed by the presence of lithium in absorption, strong H$\alpha$ in emission or weak gravity-sensitive features. In addition, we have obtained high resolution (R~34000) spectra in the H$\alpha$ region for 169 stars in the region. Radial velocities were calculated from this data set. The radial velocity distribution for members of the cluster is in agreement with previous work. Analysis of the profile of the H$\alpha$ line and infrared observations reveals two binary systems or fast rotators that mimic the H$\alpha$ width expected in stars with accretion disks. On the other hand there are stars with optically thick disks and narrow H$\alpha$ profile not expected in stars with accretion disks. This contribution constitutes the largest homogeneous spectroscopic data set of the Sigma Orionis cluster to date.
    Full-text Article · Aug 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected up to ages of 10 Myr. We analyze a sample of these old accretors identified by having a significant $U$ band excess and infrared emission from a circumstellar disk. Objects were selected from the ~3 Myr sigma Ori, 4-6 Myr Orion OB1b and 7-10 Myr Orion OB1a star forming associations. We use high resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations, obtained with the Magellan Echellette and in a few cases the SWIFT Ultraviolet and Optical Telescope, to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ~10^-8 msun/ yr. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales, unless the initial disk mass is very high, a situation which is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.
    Full-text Article · Jun 2014 · The Astrophysical Journal
  • Catherine Espaillat
    [Show abstract] [Hide abstract] ABSTRACT: The details of how protoplanetary disks evolve from initially well-mixed distributions of gas and dust to systems composed mostly of rocky planets and gas giants like our own solar system is a fundamental question in astronomy. It is widely accepted that the first step in planet formation is dust grain growth and settling to the disk midplane. This dust evolution in disks can be studied in greater detail with far-infrared and submillimeter wavelength observations, which offer us unique access to the outer disk's deeper layers. Here we present Herschel far-infrared and submillimeter spectra of GM Aur taken with PACS and SPIRE. GM Aur is a transitional disk, whose inner disk hole is proposed to have been cleared by yet unseen planets. By utilizing Herschel data, we can potentially link the properties of dust evolution in the outer disk to dust clearing in the inner disk. In particular, preliminary SED modeling presented here suggests that GM Aur may have a lower gas-to-dust mass ratio than typically assumed for disks, which may be linked to disk clearing by planets. With further study, such Herschel data may provide insight for theoretical modeling of dust evolution and planet formation.
    Article · Jun 2014 · Proceedings of the International Astronomical Union
  • Source
    J. T. Keane · I. Pascucci · C. Espaillat · [...] · W. R. F. Dent
    [Show abstract] [Hide abstract] ABSTRACT: Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [OI] 63 micron for 21 transitional disks. Our survey complements the larger Herschel GASPS program "Gas in Protoplanetary Systems" (Dent et al. 2013) by quadrupling the number of transitional disks observed with PACS at this wavelength. [OI] 63 micron traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [OI] 63 micron line luminosities two times fainter than their full disk counterparts. We self consistently determine various stellar properties (e.g. bolometric luminosity, FUV excess, etc.) and disk properties (e.g. disk dust mass, etc.) that could influence the [OI] 63 micron line luminosity and we find no correlations that can explain the lower [OI] 63 micron line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.
    Full-text Article · Apr 2014 · The Astrophysical Journal
  • Catherine Espaillat · James Muzerolle · Joan Najita · [...] · Paola D'Alessio
    [Show abstract] [Hide abstract] ABSTRACT: Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk structure in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about to undergo its next burst of growth as ALMA reaches its full potential. We discuss what we have learned about transitional disks from SEDs, color-color diagrams, and imaging in the (sub)mm and infrared. We then distill the observations into constraints for the main disk clearing mechanisms proposed to date (i.e., photoevaporation, grain growth, and companions) and explore how the expected observational signatures from these mechanisms, particularly planet-induced disk clearing, compare to actual observations. Lastly, we discuss future avenues of inquiry to be pursued with ALMA, JWST, and next generation of ground-based telescopes.
    Article · Feb 2014
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30-day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes, and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" having discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with H$\alpha$ emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.
    Full-text Article · Jan 2014 · The Astronomical Journal
  • [Show abstract] [Hide abstract] ABSTRACT: Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.
    Article · Jan 2014
  • [Show abstract] [Hide abstract] ABSTRACT: The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10–8 to 10–10 M ☉ yr–1, the maximum grain size in the lower layer decreases from ~3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10–4 of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.
    Article · Aug 2013 · The Astrophysical Journal

Publication Stats

2k Citations


  • 2014
    • Boston University
      Boston, Massachusetts, United States
  • 2013
    • Rochester Institute of Technology
      Rochester, New York, United States
    • Universidad Nacional Autónoma de México
      • Centre of Radio Astronomy and Astrophysics
      Ciudad de México, The Federal District, Mexico
  • 2012-2013
    • Idenix Pharmaceuticals, Inc.
      Cambridge, Massachusetts, United States
  • 2009-2013
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2009-2011
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States
  • 2008-2009
    • University of Michigan
      • Department of Astronomy
      Ann Arbor, Michigan, United States