Are you Guixiang Zhang?

Claim your profile

Publications (2)7.17 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nine Chinese yak breeds (Maiwa, Tianzhu White, Qinghai Plateau, Sibu, Zhongdian, Pali, Tibetan High Mountain, Jiulong, and Xinjiang) and Gayal were analyzed by means of 16 microsatellite markers to determine the level of genetic variation within populations, genetic relationship between populations, and population structure for each breed. A total of 206 microsatellite alleles were observed. Mean F-statistics (0.056) for 9 yak breeds indicated that 94.4% of the genetic variation was observed within yak breeds and 5.6% of the genetic variation existed amongst breeds. The Neighbor-Joining phylogenetic tree was constructed based on Nei's standard genetic distances and two clusters were obtained. The Gayal separated from the yaks far away and formed one cluster and 9 yak breeds were grouped together. The analysis of population structure for 9 yak breeds and the Gayal showed that they resulted in four clusters; one cluster includes yaks from Tibet Autonomous Region and Qinghai Province, one cluster combines Zhongdian, Maiwa, and Tianzhu White, and Jiulong and Xinjiang come into the third cluster. Pali was mainly in the first cluster (90%), Jiulong was mainly in the second cluster (87.1%), Zhongdian was primarily in the third cluster (83%), and the other yak breeds were distributed in two to three clusters. The Gayal was positively left in the fourth cluster (99.3%).
    No preview · Article · May 2008 · Journal of Genetics and Genomics
  • Source
    Shangang Jia · Hong Chen · Guixiang Zhang · Zhigang Wang · Chuzhao Lei · Ru Yao · Xu Han
    [Show abstract] [Hide abstract]
    ABSTRACT: The complete mitochondrial D-loop region from 123 individuals in 12 Chinese cattle breeds and two individuals in Germany Yellow cattle breed was sequenced and analyzed. The results were shown as follows: 93 variations and 57 haplotypes were detected, and the average number of nucleotide difference was 22.708, nucleotide diversity (d) was 0.0251 +/- 0.00479, and haplotype diversity (Hd) was 0.888 +/- 0.026, indicating very high genetic diversity in Chinese cattle breeds. In the Neighbor-Joining tree, 13 cattle breeds were divided into two main clades, Bos taurus and Bos indicus; new Clade ? had only one sequence from Apeijiaza cattle breed in Tibet, which was similar to that of yak at a higher level than other cattle breeds, proving the introgression of genes from the yak. The proportions of Bos taurus and Bos indicus were 64.3% and 35.7% respectively in XigazĂȘ Humped cattle breed, and 50.0% and 50.0% respectively in Apeijiaza cattle breed, which revealed that Tibet cattle included Bos indicus haplotypes. The importance of Yunnan cattle in the origin of Chinese cattle was also confirmed based on their abundant haplotypes. Then, a very special haplotype i1 discovered in 27 Chinese cattle breeds, including 11 breeds in this study and 16 breeds in the GenBank, played the role of a nucleus in Chinese zebu and was further discussed. At the same time, the construction of Chinese zebu core group based on haplotype i1 validated the distinct origin of Bos indicus in Tibet, which was different from that of the other cattle breeds with zebu haplotypes in China.
    Preview · Article · Jul 2007 · Journal of Genetics and Genomics