C. Messenger

University of Glasgow, Glasgow, Scotland, United Kingdom

Are you C. Messenger?

Claim your profile

Publications (186)695.52 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the issue in determining the significance of candidate transient gravitational-wave events in a ground-based interferometer network. Given the presence of non-Gaussian noise artefacts in real data, the noise background must be estimated empirically from the data itself. However, the data also potentially contains signals, thus the background estimate may be overstated due to contributions from signals. It has been proposed to mitigate possible bias by removing single-detector data samples that pass a multi-detector consistency test from the background estimates. We conduct a high-statistics Mock Data Challenge to evaluate the effects of removing such samples, modelling a range of scenarios with plausible detector noise distributions and with a range of plausible foreground astrophysical signal rates. We consider the the two different modes: one in which coincident samples are removed, and one in which all samples are retained and used. Three algorithms were operated in both modes, show good consistency with each other; however, discrepancies arise between the results obtained under the "coincidence removal" and "all samples" modes, for false alarm probabilities below a certain value. In most scenarios the median of the false alarm probability (FAP) estimator under the "all samples" mode is consistent with the exact FAP. On the other hand the "coincidence removal" mode is found to be unbiased for the mean of the estimated FAP. While the numerical values at which discrepancies become apparent are specific to the details of our experiment, we believe that the qualitative differences in the behaviour of the median and mean of the FAP estimator have more general validity. On the basis of our study we suggest that the FAP of candidates for the first detection of gravitational waves should be estimated without removing single-detector samples that form coincidences.
    Preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 seconds in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also report upper limits on the source rate density per year per Mpc^3 for specific signal models. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.
    Full-text · Article · Nov 2015
  • Source
    M. Pitkin · C. Messenger · L. Wright
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate a method to assess the validity of gravitational-wave detector calibration through the use of gamma-ray bursts as standard sirens. Such signals, as measured via gravitational-wave observations, provide an estimated luminosity distance that is subject to uncertainties in the calibration of the data. If a host galaxy is identified for a given source then its redshift can be combined with current knowledge of the cosmological parameters yielding the true luminosity distance. This will then allow a direct comparison with the estimated value and can validate the accuracy of the original calibration. We use simulations of individual detectable gravitational-wave signals from binary neutron star (BNS) or neutron star-black hole (NSBH) systems, which we assume to be found in coincidence with short gamma-ray bursts, to estimate any discrepancy in the overall scaling of the calibration for detectors in the Advanced LIGO and Advanced Virgo network. We find that the amplitude scaling of the calibration for the LIGO instruments could on average be confirmed to within $\sim 10\%$ for a BNS source within 100 Mpc. This result is largely independent of the current detector calibration method and gives an uncertainty that is competitive with that expected in the current calibration procedure. Confirmation of the calibration accuracy to within $\sim 20\%$ can be found with BNS sources out to $\sim 500$ Mpc.
    Preview · Article · Nov 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 Hz and 128 Hz with a range of spin-down between $-1.0 \times 10^{-10}$ Hz/s and $+1.5 \times 10^{-11}$ Hz/s, and was based on a hierarchical approach. The starting point was a set of short Fast Fourier Transforms (FFT), of length 8192 seconds, built from the calibrated strain data. Aggressive data cleaning, both in the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each dataset a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer FFTs followed by a further incoherent analysis. No evidence for continuous gravitational wave signals was found, therefore we have set a population-based joint VSR2-VSR4 90$\%$ confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 Hz and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted at frequencies below 50 Hz. We set upper limits in the range between about $10^{-24}$ and $2\times 10^{-23}$ at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of $\sim$2 with respect to the results of previous all-sky searches at frequencies below $80~\mathrm{Hz}$.
    No preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is $6.87^\circ$ in diameter and centered on $20^\textrm{h}10^\textrm{m}54.71^\textrm{s}+33^\circ33'25.29"$, and the other (B) is $7.45^\circ$ in diameter and centered on $8^\textrm{h}35^\textrm{m}20.61^\textrm{s}-46^\circ49'25.151"$. We explored the frequency range of 50-1500 Hz and frequency derivative from $0$ to $-5\times 10^{-9}$ Hz/s. A multi-stage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near $169$ Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized strain amplitude $h_0$ of $6.3\times 10^{-25}$, while at the high end of our frequency range we achieve a worst-case upper limit of $3.4\times 10^{-24}$ for all polarizations and sky locations.
    No preview · Article · Oct 2015
  • Walter Del Pozzo · Tjonnie G. F. Li · Chris Messenger
    [Show abstract] [Hide abstract]
    ABSTRACT: Gravitational waves emitted during the coalescence of binary neutron star systems are self-calibrating signals. As such they can provide a direct measurement of the luminosity distance to a source without the need for a cosmic distance scale ladder. In general, however, the corresponding redshift measurement needs to be obtained electromagnetically since it is totally degenerate with the total mass of the system. Nevertheless, recent Fisher matrix studies has shown that if information about the equation of state of the neutron stars is available, it is indeed possible to extract redshift information from the gravitational wave signal alone. Therefore, measuring the cosmological parameters in pure gravitational wave fashion is possible. Furthermore, the huge number of sources potentially observable by the Einstein Telescope has led to speculations that the gravitational wave measurement is potentially competitive with traditional methods. The Einstein telescope is a conceptual study for a third generation gravitational wave detector which is designed to yield detections of $10^3-10^7$ binary neutron star systems per year. This study presents the first Bayesian investigation of the accuracy with which the cosmological parameters can be measured using observations of binary neutron star systems by the Einstein Telescope with the one year of observations. We find by direct simulation of $10^3$ detections of binary neutron stars that, within our simplifying assumptions, $H_0,\Omega_m,\Omega_\Lambda,w_0$ and $w_1$ can be measured at the $95\%$ level with an accuracy of $\sim 8\%,65\%,39\%,80\%$ and $90\%$, respectively. We also find, by extrapolation, that a measurement accuracy comparable with current measurements by Planck is reached for a number of observed events $O(10^{6-7})$
    No preview · Article · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The source sky location estimate for the first detected gravitational wave signals will likely be poor, typically spanning areas more than hundreds of square degrees. It is an enormous task for most telescopes to search such large sky regions for counterpart signals in the electromagnetic spectrum. To maximise the chance of successfully observing the desired counterpart signal, we have developed an algorithm which maximises the detection probability by optimising the number of observing fields, and the time allocation for those fields. As a proof-of-concept demonstration, we use the algorithm to optimise the follow-up observations of the Palomar Transient Factory for a simulated gravitational wave event. We show that the optimal numbers for the Palomar Transient Factory are $24$ and $68$ for observation times $1800s$ and $5400s$ respectively, with a maximum detection probability about $65\%$ for a kilonova at $200 Mpc$.
    Full-text · Article · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO ($4 \times 10^{-24}$ Hz$^{-1/2}$). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at $6.8 \times 10^{-26}$ strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from $1.2 \times 10^{-25}$ (25 Hz) to $2.2 \times 10^{-26}$ (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.
    Preview · Article · Apr 2015 · Physical Review D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.
    Full-text · Article · Apr 2015 · Classical and Quantum Gravity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as $4\times10^{-25}$ on intrinsic strain, $2\times10^{-7}$ on fiducial ellipticity, and $4\times10^{-5}$ on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.
    Full-text · Article · Dec 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results of a search for continuously-emitted gravitational radiation, directed at the brightest low-mass X-ray binary, Scorpius X-1. Our semi-coherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent $\mathcal{F}$-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e-24 and 8e-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.
    Full-text · Article · Dec 2014 · Physical Review D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of $10^{-2}$ M$_\odot$c$^2$ at $\sim 150$ Hz with $\sim 60$ ms duration, and high-energy neutrino emission of $10^{51}$ erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below $1.6 \times 10^{-2}$ Mpc$^{-3}$yr$^{-1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.
    Full-text · Article · Nov 2014 · Physical Review D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95$\%$ confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
    Full-text · Article · Oct 2014 · Physical Review D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2009-2010, the Laser Interferometer Gravitational-wave Observa- tory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the gravitational-wave readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the de- tectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.
    Full-text · Article · Oct 2014 · Classical and Quantum Gravity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a $95\%$ confidence level (C.L.) upper limit on the gravitational-wave energy density of \Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of $\sim 180$. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
    Full-text · Article · Oct 2014 · Physical Review D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Waveguide mirrors possess nano-structured surfaces which can potentially provide a significant reduction in thermal noise over conventional dielectric mirrors. To avoid introducing additional phase noise from motion of the mirror transverse to the reflected light, however, they must possess a mechanism to suppress the phase effects associated with the incident light translating across the nano-structured surface. It has been shown that with carefully chosen parameters this additional phase noise can be suppressed. We present an experimental measurement of the coupling of transverse to longitudinal displacements in such a waveguide mirror designed for 1064 nm light. We bound the level of measured transverse to longitudinal motion between one part in fifty two thousand five hundred and one part in eight thousand seven hundred with 95% confidence, representing a significant improvement over a previously measured grating mirror.
    Full-text · Article · Oct 2014 · Classical and Quantum Gravity
  • [Show abstract] [Hide abstract]
    ABSTRACT: We summarise the parallel session C7 Multi-Messenger Astronomy of GW Sources in the GR20 Amaldi 10 Conference. The talks in this session covered a wide range of topics in multi-messenger astronomy.
    No preview · Article · Sep 2014 · General Relativity and Gravitation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational-wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational-wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational-wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational-wave data is available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational-wave emission energy of $10^{-2}M_{\odot}c^2$ at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational-wave detectors, and a resulting examination of prospects for the advanced gravitational-wave detectors.
    Full-text · Article · Jun 2014 · Physical Review Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the universe. We carry out a search for the stochastic background with the latest data from LIGO and Virgo. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega_GW(f)=Omega_alpha*(f/f_ref)^alpha, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha=0, we constrain the energy density of the stochastic background to be Omega_GW(f)<5.6x10^-6. For the 600-1000 Hz band, Omega_GW(f)<0.14*(f/900 Hz)^3, a factor of 2.5 lower than the best previously reported upper limits. We find Omega_GW(f)<1.8x10^-4 using a spectral index of zero for 170-600 Hz and Omega_GW(f)<1.0*(f/1300 Hz)^3 for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the detection of inflationary gravitational waves.
    Full-text · Article · Jun 2014 · Physical Review Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
    Full-text · Article · May 2014 · Physical Review D

Publication Stats

5k Citations
695.52 Total Impact Points

Top co-authors View all

Institutions

  • 2007-2015
    • University of Glasgow
      • School of Physics and Astronomy
      Glasgow, Scotland, United Kingdom
  • 2011-2013
    • University of South Wales
      Понтиприте, Wales, United Kingdom
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
  • 2009-2013
    • Max Planck Institute for Physics
      München, Bavaria, Germany
  • 1970-2013
    • Leibniz Universität Hannover
      • Institute of Gravitation Physics
      Hanover, Lower Saxony, Germany
  • 2003-2011
    • Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute)
      Potsdam, Brandenburg, Germany
  • 2005
    • California Institute of Technology
      • Department of Physics
      Pasadena, California, United States
  • 2004-2005
    • University of Birmingham
      • School of Physics and Astronomy
      Birmingham, England, United Kingdom
    • Carleton College
      نورثفیلد، مینه‌سوتا, Minnesota, United States