Allen L. Humphrey

University of Pittsburgh, Pittsburgh, Pennsylvania, United States

Are you Allen L. Humphrey?

Claim your profile

Publications (29)124.89 Total impact

  • Barton F Branstetter · Allen L Humphrey · John B Schumann
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been previously shown that integrating radiology teaching into the first year of medical education has an immediate positive effect on medical students' attitudes toward the practice of radiology. The purpose of this study is to determine whether these changes in attitude persist through the clinical years of training and whether preclinical exposure to radiology has a long-term effect on medical students' opinions about radiology and radiologists. The first-year medical curriculum at the University of Pittsburgh School of Medicine was revised between the 2003 and 2004 academic years, with 2.5 hours of additional radiology lectures integrated into the existing preclinical coursework. Additionally, radiology consult sessions were integrated into problem-based learning sessions. An initial survey was administered in the preclinical years of training to assess first-year medical students' attitudes toward radiology before and after the changes to the curriculum. A follow-up survey was administered before graduation to determine whether the changes in attitude revealed in the first survey persisted throughout the remaining years of training, and to assess students' opinions about negative radiologist stereotypes. Students who had undergone the revised curriculum were compared to students who had undergone the traditional curriculum. There were statistically significant differences between the two graduating classes in terms of interest in, and perceptions of, the field of radiology. At graduation, students exposed to the revised preclinical curriculum with a greater exposure to radiology had a greater interest in radiology as a discipline and were more likely to have taken senior electives in radiology. These graduating students were also less likely to agree with negative stereotypes about radiologists. Dedicated medical student teaching from an academic radiologist during the first year of medical school has a positive, long-lasting effect on medical students' attitudes toward radiology. The prevalence of negative stereotypes about radiologists among graduating medical students can be reduced by appropriate teaching of radiology in the preclinical years of medical school.
    No preview · Article · Nov 2008 · Academic radiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine whether an integrated radiology curriculum in the first year of medical school changes medical students' attitudes toward radiology or affects their knowledge of radiologic principles. The first-year medical curriculum of a medical school was revised between the 2003 and 2004 academic years to introduce more didactic radiology teaching. Dedicated radiology lectures were introduced, and radiology consult sessions became integral to problem-based learning sessions. A survey was administered between the first and second years of training to assess first-year medical students' attitudes toward radiology and their knowledge of basic radiologic principles. Students who had undertaken the revised curriculum (class of 2008) were compared with students who had undertaken the traditional curriculum (class of 2007). Survey responses were compared with Mann-Whitney rank sum tests. Students exposed to the new curriculum stated that they were more familiar with radiology as a specialty and believed that radiology had greater importance to the overall practice of medicine. They stated that they were more likely to select radiology as a clinical elective, and more of them were considering radiology as a career option. The students who had been exposed to radiology performed better on the test of basic radiologic knowledge. All results were statistically significant. Exposing students to radiology in the first year of medical school improves their impression of radiology as a specialty and increases their interest in radiology as a career. Follow-up surveys will determine whether this effect persists through the clinical years of training and improves the overall impression of radiology within the medical community.
    Preview · Article · Feb 2007 · American Journal of Roentgenology
  • Source
    Alan B Saul · Peter L Carras · Allen L Humphrey
    [Show abstract] [Hide abstract]
    ABSTRACT: Motion in the visual scene is processed by direction-selective neurons in primary visual cortex. These cells receive inputs that differ in space and time. What are these inputs? A previous single-unit recording study in anesthetized monkey V1 proposed that the two major streams arising in the primate retina, the M and P pathways, differed in space and time as required to create direction selectivity. We confirmed that cortical cells driven by P inputs tend to have sustained responses. The M pathway, however, as assessed by recordings in layer 4Calpha and from cells with high contrast sensitivity, is not purely transient. The diversity of timing in the M stream suggests that combinations of M inputs, as well as of M and P inputs, create direction selectivity.
    Full-text · Article · Aug 2005 · Journal of Neurophysiology
  • Allen L. Humphrey · Alan B. Saul
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of direction selectivity in layer 4 of cat primary visual cortex depends on a number of mechanisms, both thalamocortical and intracortical. Lagged and nonlagged lateral geniculate nucleus (LGN) cells provide the cortex with a range of timings, or response phases, that serve as initial substrates for producing response timing gradients across receptive fields. This is particularly important at low temporal frequencies. These gradients induce directional tuning. Gradients might be established by direct convergence of afferents with spatially and temporally offset receptive fields, by indirect convergence via other simple cells with certain spatiotemporal relationships to their targets, or, most likely, by both mechanisms. Inhibitory interactions among simple cells appear to contribute to direction selectivity (DS) mainly by creating or enhancing spatiotemporal (S–T) inseparable receptive-field structure. Recurrent excitatory interactions enhance DS by amplifying suprathreshold responses. DS among most layer 4 simple cells can be explained by linear/nonlinear (LN) models in which quasilinear summation of synaptic potentials across an S–T inseparable receptive field induces directional tuning that is then enhanced by relatively simple nonlinear processes associated with spike generation.
    No preview · Chapter · Dec 2002
  • Allen L. Humphrey · Aditya Murthy
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous evidence concerning the physiological cell classes in the medial interlaminar nucleus (MIN) has been conflicting. We reexamined the MIN using standard functional tests to distinguish X-, Y- and W-cells. Discharge patterns to flashing spots also were used to identify some cells as lagged or nonlagged, as previously done for the geniculate A-layers. Also, each cell's response timing (latency and absolute phase) was measured from discharges to a spot undergoing sinusoidal luminance modulation. Of 71 MIN cells, 48% were Y, 27% were W, 8% were X, and 17% were unclassifiable. Lagged and nonlagged discharge profiles were observed in each cell group, with 28% of all cells being lagged. Lagged cells displayed a response suppression and long latency to discharge following spot onset, and a slow decay in firing at spot offset that was often preceded by a transient discharge. These profiles were indistinguishable from those of lagged cells in the A-layers. MIN cells also were heterogeneous in response timing, displaying a range of latency and absolute phase values similar to that in the A-layers. We extended these analyses to 27 cells in the geniculate C-layers. In layer C, 35% of cells were Y, 10% were X, 25% were W, and 30% were unclassifiable. About 11% had lagged profiles, and were X-cells or unclassifiable cells. Layers C1 and C2 contained only W-cells and no lagged profiles. The range of timings in the C-layers was somewhat narrower than in the MIN. Overall, these results show that the MIN contains a greater variety of functional cell classes than heretofore appreciated. Further, it appears that mechanisms which create different timing delays in the A-layers also exist in the MIN and layer C. These timings may contribute to direction selectivity in extrastriate cortex.
    No preview · Article · May 1999 · Visual Neuroscience
  • Source
    A Murthy · AL Humphrey
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracortical inhibition contributes to direction selectivity in primary visual cortex, but how it acts has been unclear. We investigated this problem in simple cells of cat area 17 by taking advantage of the link between spatiotemporal (S-T) receptive-field structure and direction selectivity. Most cells in layer 4 have S-T-oriented receptive fields in which gradients of response timing across the field confer a preferred direction of motion. Linear summation of responses across the receptive field, followed by a static nonlinear amplification, has been shown previously to account for directional tuning in layer 4. We tested the hypotheses that inhibition acts by altering S-T structure or the static nonlinearity or both. Drifting and counterphasing sine wave gratings were used to measure direction selectivity and S-T structure, respectively, in 17 layer 4 simple cells before and during iontophoresis of bicuculline methiodide (BMI), a GABAA antagonist. S-T orientation was quantified from fits to response temporal phase versus stimulus spatial phase data. Bicuculline reduced direction selectivity and S-T orientation in nearly all cells, and reductions in the two measures were well correlated (r = 0.81) and reversible. Using conventional linear predictions based on response phase and amplitude, we found that BMI-induced changes in S-T structure also accounted well for absolute changes in the amplitude and phase of responses to gratings drifting in the preferred and nonpreferred direction. For each cell we also calculated an exponent used to estimate the static nonlinearity. Bicuculline reduced the exponent in most cells, but the changes were not correlated with reductions in direction selectivity. We conclude that GABAA-mediated inhibition influences directional tuning in layer 4 primarily by sculpting S-T receptive-field structure. The source of the inhibition is likely to be other simple cells with certain spatiotemporal relationships to their target. Despite reductions in the two measures, most receptive fields maintained some directional tuning and S-T orientation during BMI. This suggests that their excitatory inputs, arising from the lateral geniculate nucleus and within area 17, are sufficient to create some S-T orientation and that inhibition accentuates it. Finally, BMI also reduced direction selectivity in 8 of 10 simple cells tested in layer 6, but the reductions were not accompanied by systematic changes in S-T structure. This reflects the fact that S-T orientation, as revealed by our first-order measures of the receptive field, is weak there normally. Inhibition likely affects layer 6 cells via more complex, nonlinear interactions.
    Preview · Article · Apr 1999 · Journal of Neurophysiology
  • Source
    AL Humphrey · AB Saul
    [Show abstract] [Hide abstract]
    ABSTRACT: Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. J. Neurophysiol. 80: 2991-3004, 1998. Direction selectivity in simple cells of cat area 17 is linked to spatiotemporal (S-T) receptive-field structure. S-T inseparable receptive fields display gradients of response timing across the receptive field that confer a preferred direction of motion. Receptive fields that are not direction selective lack gradients; they are S-T separable, displaying uniform timing across the field. Here we further examine this link using a developmental paradigm that disrupts direction selectivity. Cats were reared from birth to 8 mo of age in 8-Hz stroboscopic illumination. Direction selectivity in simple cells was then measured using gratings drifting at different temporal frequencies (0.25-16 Hz). S-T structure was assessed using stationary bars presented at different receptive-field positions, with bar luminance being modulated sinusoidally at different temporal frequencies. For each cell, plots of response phase versus bar position were fit by lines to characterize S-T inseparability at each temporal frequency. Strobe rearing produced a profound loss of direction selectivity at all temporal frequencies; only 10% of cells were selective compared with 80% in normal cats. The few remaining directional cells were selective over a narrower than normal range of temporal frequencies and exhibited weaker than normal direction selectivity. Importantly, the directional loss was accompanied by a virtual elimination of S-T inseparability. Nearly all cells were S-T separable, like nondirectional cells in normal cats. The loss was clearest in layer 4. Normally, inseparability is greatest there, and it correlates well (r = 0.77) with direction selectivity; strobe rearing reduced inseparability and direction selectivity to very low values. The few remaining directional cells were inseparable. In layer 6 of normal cats, most direction-selective cells are only weakly inseparable, and there is no consistent relationship between the two measures. However, after strobe rearing, even the weak inseparability was eliminated along with direction selectivity. The correlated changes in S-T structure and direction selectivity were confirmed using conventional linear predictions of directional tuning based on responses to counterphasing bars and white noise stimuli. The developmental changes were permanent, being observed up to 12 yr after strobe rearing. The deficits were remarkably specific; strobe rearing did not affect spatial receptive-field structure, orientation selectivity, spatial or temporal frequency tuning, or general responsiveness to visual stimuli. These results provide further support for a critical role of S-T structure in determining direction selectivity in simple cells. Strobe rearing eliminates directional tuning by altering the timing of responses within the receptive field.
    Full-text · Article · Jan 1999 · Journal of Neurophysiology
  • Source
    AL Humphrey · AB Saul · J C Feidler
    [Show abstract] [Hide abstract]
    ABSTRACT: Strobe rearing prevents the convergence of inputs with different response timings onto area 17 simple cells. J. Neurophysiol. 80: 3005-3020, 1998. The preceding paper showed that the loss of direction selectivity in simple cells induced by strobe rearing reflects the elimination of spatially ordered response timing differences across the receptive field that underlie spatiotemporal (S-T) inseparability. Here we addressed whether these changes reflected an elimination of certain timings or an alteration in how timings were associated in single cells. Timing in receptive fields was measured using stationary bars undergoing sinusoidal luminance modulation at different temporal frequencies (0.5-6 Hz). For each bar position, response phase versus temporal frequency data were fit by a line to obtain two measures: absolute phase and latency. In normal cats, many individual simple cells display a wide range of timings; in layer 4, the mean range for absolute phase and latency was 0.21 cycles and 39 ms, respectively. Strobe rearing compressed the mean timing ranges in single cells, to 0.08 cycles and 31 ms, respectively, and this compression accounted for the loss of inseparability. A similar compression was measured in layer 6 cells. In contrast, the range of timing values across the simple-cell population was relatively normal. Single cells merely sampled narrower than normal regions of the timing space. We sought to understand these cortical changes in terms of how inputs from the lateral geniculate nucleus (LGN) may have been affected by strobe rearing. In normal cats, a wide range of absolute phase and latency values exists among lagged and nonlagged LGN cells, and these thalamic timings account for most of the cortical timings. Also, S-T inseparability in many simple cells can be attributed to the convergence of lagged and/or nonlagged inputs. Strobe rearing did not change the sampling of lagged and nonlagged cells, and the geniculate timings continued to account for most of the cortical timings. However, strobe rearing virtually eliminated cortical receptive fields with mixed lagged and nonlagged timing, and it compressed the timing range in cells dominated by one or the other geniculate type. Thus strobe rearing did not eliminate certain timings in LGN or cortex, but prevented the convergence of different timings on single cells. To account for these results, we propose a developmental model in which strobe stimulation alters the correlational structure of inputs based on their response timing. Only inputs with similar timing become associated on single cortical cells, and this produces S-T separable receptive fields that lack the ability to confer a preferred direction of motion.
    Full-text · Article · Jan 1999 · Journal of Neurophysiology
  • Source
    A Murthy · A.L. HUMPHREY · A.B. SAUL · J.C. FEIDLER
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies of cat visual cortex have shown that the spatiotemporal (S-T) structure of simple cell receptive fields correlates with direction selectivity. However, great heterogeneity exists in the relationship and this has implications for models. Here we report a laminar basis for some of the heterogeneity. S-T structure and direction selectivity were measured in 101 cells using stationary counterphasing and drifting gratings, respectively. Two procedures were used to assess S-T structure and its relation to direction selectivity. In the first, the S-T orientations of receptive fields were quantified by fitting response temporal phase versus stimulus spatial phase data. In the second procedure, conventional linear predictions of direction selectivity were computed from the amplitudes and phases of responses to stationary gratings. Extracellular recording locations were reconstructed histologically. Among direction-selective cells, S-T orientation was greatest in layer 4B and it correlated well (r = 0.76) with direction selectivity. In layer 6, S-T orientation was uniformly low, overlapping little with layer 4B, and it was not correlated with directional tuning. Layer 4A was intermediate in S-T orientation and its relation (r = 0.46) to direction selectivity. The same laminar patterns were observed using conventional linear predictions. The patterns do not reflect laminar differences in direction selectivity since the layers were equivalent in directional tuning. We also evaluated a model of linear spatiotemporal summation followed by a static nonlinear amplification (exponent model) to account for direction selectivity. The values of the exponents were estimated from differences between linearly predicted and actual amplitude modulations to counterphasing gratings. Comparing these exponents with another exponent--that required to obtain perfect matches between linearly predicted and measured directional tuning--indicates that an exponent model largely accounts for direction selectivity in most cells in layer 4, particularly layer 4B, but not in layer 6. Dynamic nonlinearities seem essential for cells in layer 6. We suggest that these laminar differences may partly reflect the differential involvement of geniculocortical and intracortical mechanisms.
    Full-text · Article · Feb 1998 · Visual Neuroscience
  • JC Feidler · AB Saul · A. Murthy · AL Humphrey
    [Show abstract] [Hide abstract]
    ABSTRACT: Zero-sum Hebbian learning rules that reinforce well correlated inputs have been used by others to model the competitive self-organization of afferents from the lateral geniculate nucleus to produce orientation selectivity and ocular dominance columns. However, the application of these simple Hebbian rules to the development of direction selectivity (DS) is problematic because the best correlated inputs are those that are well correlated in both the preferred and nonpreferred directions of motion. Such afferents would combine to produce non-DS cortical units. Afferents that are in spatiotemporal quadrature would combine to produce DS cortical units, but are poorly correlated in the nonpreferred direction. In this paper, the development of DS is reduced to the problem of associating a pair of units in spatiotemporal quadrature in the face of competition from a third, non-quadrature unit. As expected, simple Hebbian learning rules perform poorly at associating the quadrature pair. However, two additional Hebb-type learning rules, postsynaptic gating and BCM (Bienenstock, Cooper and Munro), improve performance. Results from this three-input model are shown to generalize to a larger network. We conclude that learning rules in which the postsynaptic response determines the magnitude and/or direction of synaptic change perform better than simple Hebbian rules at establishing direction selectivity.
    No preview · Article · May 1997 · Network Computation in Neural Systems
  • Source
    A B Saul · A L Humphrey
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The visual cortex receives several types of afferents from the lateral geniculate nucleus (LGN) of the thalamus. In the cat, previous work studied the ON/OFF and X/Y distinctions, investigating their convergence and segregation in cortex. Here we pursue the lagged/nonlagged dichotomy as it applies to simple cells in area 17. Lagged and nonlagged cells in the A-layers of the LGN can be distinguished by the timing of their responses to sinusoidally luminance-modulated stimuli. We therefore used similar stimuli in cortex to search for signs of lagged and nonlagged inputs to cortical cells. 2. Line-weighting functions were obtained from 37 simple cells. A bar was presented at a series of positions across the receptive field, with the luminance of the bar modulated sinusoidally at a series of temporal frequencies. First harmonic response amplitude and phase values for each position were plotted as a function of temporal frequency. Linear regression on the phase versus temporal frequency data provided estimates of latency (slope) and absolute phase (intercept) for each receptive-field position tested. These two parameters were previously shown to distinguish between lagged and nonlagged LGN cells. Lagged cells generally have latencies > 100 ms and absolute phase lags; nonlagged cells have latencies < 100 ms and absolute phase leads. With the use of these criteria, we classified responses at discrete positions inside cortical receptive fields as lagged-like and nonlagged-like. 3. Both lagged-like and nonlagged-like responses were observed. The majority of cortical cells had only or nearly only nonlagged-like zones. In 15 of the 37 cells, however, the receptive field consisted of > or = 20% lagged-like zones. For eight of these cells, lagged-like responses predominated. 4. The distribution of latency and absolute phase across the sample of cortical simple cell receptive fields resembled the distribution for LGN cells. The resemblance was especially striking when only cells in or adjacent to geniculate recipient layers were considered. Absolute phase lags were almost uniformly associated with long latencies. Absolute phase leads were generally associated with short latencies, although cortical cells responded with long latencies and absolute phase leads slightly more often than LGN cells. 5. Cells in which a high percentage of lagged-like responses were observed had a restricted laminar localization, with all but two being found in layer 4B or 5A. Cells with predominantly nonlagged-like responses were found in all layers. 6. Lagged-like zones can not be easily explained as a result of stimulating combinations of nonlagged inputs.(ABSTRACT TRUNCATED AT 400 WORDS)
    Full-text · Article · Nov 1992 · Journal of Neurophysiology
  • A L Humphrey · A B Saul
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The A-laminae of the cat lateral geniculate nucleus (LGN) contain two distinct groups of relay neurons: lagged and nonlagged cells. The groups differ in the pattern, timing, and amplitude of response to flashing spots. At spot onset, nonlagged cells discharge at short latency with an excitatory transient; in lagged cells this transient is supplanted by an inhibitory dip and a delayed latency to discharge. At spot offset, lagged cell discharge decays more slowly than in nonlagged cells. Here we have investigated the facilitatory influence of the brain stem reticular formation on the response properties of lagged X-cells (XL) and nonlagged X- and Y-cells (XN and YN). We were particularly interested in whether the inhibitory dip and sluggish response of lagged cells could be reversed during brain stem activation and the cells induced to respond like nonlagged cells. The peribrachial region (PB) of the pontine reticular formation was stimulated electrically with the use of 1,100-ms-long pulse trains that were paired with flashing spot stimuli. 2. Stimulation of PB led to an increase in the amplitude of visually evoked discharge in lagged and nonlagged cells. Compared with their response to spot stimulation alone, the average PB-evoked increase in mean discharge rate was greater than 50% in both groups. The mean discharge rate during PB plus spot stimulation was somewhat higher for XN-cells than for YN- and XL-cells, reflecting the relatively higher discharge rate among XN-cells during spot stimulation alone. 3. Two measures of response timing characterize lagged and nonlagged cells: latency to half-maximal discharge at spot onset (half rise) and latency to half-minimal discharge at spot offset (half fall). Among XN- and YN-cells, PB stimulation had no significant effect on these two latencies; among XL-cells, both latencies were reduced by 43 and 35%, respectively, on average. 4. During spot stimulation alone, all lagged cells were distinguishable from all nonlagged cells in having half-rise and half-fall latencies greater than 60 ms. Despite the reduction among XL-cells in these 2 latencies during PB stimulation, all but 2 of the 40 XL-cells maintained laggedlike latencies. The majority (95%) of XL-cells remained unambiguously lagged on these measures during brain stem stimulation. 5. During spot stimulation alone, 30 of 40 XL-cells tested displayed a prominent and often long-lasting inhibitory dip in discharge starting approximately 45 ms after spot onset. During PB stimulation only three cells lost the dip.(ABSTRACT TRUNCATED AT 400 WORDS)
    No preview · Article · Oct 1992 · Journal of Neurophysiology
  • Alan B. Saul · Allen L. Humphrey
    [Show abstract] [Hide abstract]
    ABSTRACT: Responses of 71 cells in areas 17 and 18 of the cat visual cortex were recorded extracellularly while stimulating with gratings drifting in each direction across the receptive field at a series of temporal frequencies. Direction selectivity was most prominent at temporal frequencies of 1-2 Hz. In about 20% of the total population, the response in the nonpreferred direction increased at temporal frequencies of around 4 Hz and direction selectivity was diminished or lost. In a few cells the preferred direction reversed. One consequence of this behavior was a tendency for the preferred direction to have lower optimal temporal frequencies than the nonpreferred direction. Across the population, the preferred direction was tuned almost an octave lower. In spite of this, temporal resolution was similar in the two directions. It appeared that responses in the nonpreferred direction were suppressed at low frequencies, then recovered at higher frequencies. This phenomenon might reflect the convergence in visual cortex of lagged and nonlagged inputs from the lateral geniculate nucleus. These afferents fire about a quarter-cycle apart (i.e. are in temporal quadrature) at low temporal frequencies, but their phase difference increases to a half-cycle by about 4 Hz. Such timing differences could underlie the prevalence of direction-selective cortical responses at 1 and 2 Hz and the loss of direction selectivity in many cells by 4 or 8 Hz.
    No preview · Article · May 1992 · Visual Neuroscience
  • David N. Mastronarde · Allen L. Humphrey · Alan B. Saul
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the existence of lagged Y (YL) cells in the A laminae of the cat lateral geniculate nucleus (LGN) and on criteria for identifying them using visual and electrical stimulation. Like the lagged X (XL) cells described previously (Mastronarde, 1987a; Humphrey & Weller, 1988a), YL cells responded to a spot stimulus with an initial dip in firing and a delayed latency to discharge after spot onset, and an anomalously prolonged firing after spot offset. However, the cells received excitatory input from retinal Y rather than X afferents, and showed nonlinear spatial summation and other Y-like receptive-field properties. Three YL cells tested for antidromic activation from visual cortex were found to be relay cells, with long conduction latencies similar to those of XL cells. Simultaneous recordings of a YL cell and its retinal Y afferents show striking parallels between lagged X and Y cells in retinogeniculate functional connectivity, and suggest that the YL-cell response profile reflects inhibitory processes occurring within the LGN. The YL cells comprised approximately 5% of Y cells and approximately 1% of all cells in the A laminae. Although infrequently encountered in the LGN, they may be roughly as numerous as Y cells in the retina, and hence could fulfill an important role in vision.
    No preview · Article · Sep 1991 · Visual Neuroscience
  • Source
    D J Uhlrich · J B Cucchiaro · AL Humphrey · S M Sherman
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The lateral geniculate nucleus is the primary thalamic relay through which retinal signals pass en route to cortex. This relay is gated and can be suppressed by activity among local inhibitory neurons that use gamma-aminobutyric acid (GABA) as a neurotransmitter. In the cat, a major source of this GABAergic inhibition seems to arise from cells of the perigeniculate nucleus, which lies just dorsal to the A-laminae of the lateral geniculate nucleus. However, the morphological characteristics of perigeniculate cells, and particularly the projection patterns of their axons, have never been fully characterized. We thus examined the morphology of these cells: individually by intracellular injection of horseradish peroxidase (HRP) and en masse with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL). 2. We recorded from 12 perigeniculate cells that we impaled and successfully labeled with HRP. These cells exhibited response properties generally consistent with those described previously. They had long response latencies to stimulation of the optic chiasm and relatively large, often diffuse, receptive fields. The visually evoked responses of most of the cells were dominated by one eye. Compared with cells of the lateral geniculate nucleus, perigeniculate cells had large somata (517 +/- 136 microns 2 in cross-sectional area, mean +/- SD), which were fusiform or multipolar in shape, and dendritic arbors that extended a considerable distance (1,095 +/- 167 microns) parallel to the border between the perigeniculate and lateral geniculate nuclei. Terminal arbors of some dendrites were quite complex and beaded. 3. The axons of six perigeniculate cells were labeled sufficiently well to trace and reconstruct over a considerable distance. Each of these axons formed branches that descended to innervate the lateral geniculate nucleus, and this geniculate innervation was exclusively limited to the A-laminae. Terminal boutons within the A-laminae were nearly all en passant, which gave the axons a beaded appearance. Furthermore, branches of five of these six axons provided local innervation of the perigeniculate nucleus, generally within each labeled cell's own dendritic arbor. Three of the cells also exhibited an axon branch that extended medially and caudally away from the soma, but we were unable to trace these axon branches to their targets. 4. Within the lateral geniculate nucleus, each arbor of perigeniculate axons derived from two main components. One was a narrow, sparse medial component that innervated laminae A and A1.(ABSTRACT TRUNCATED AT 400 WORDS)
    Full-text · Article · Jul 1991 · Journal of Neurophysiology
  • Source
    A B Saul · A L Humphrey
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. It has recently been shown that the X- and Y-cell classes in the A-layers of the cat lateral geniculate nucleus (LGN) are divisible into lagged and nonlagged types. We have characterized the visual response properties of 153 cells in the A-layers to 1) reveal response features that are relevant to the X/Y and lagged/nonlagged classification schemes, and 2) provide a systematic description of the properties of lagged and nonlagged cells as a basis for understanding mechanisms that affect these two groups. Responses to flashing spots and drifting gratings were measured as the contrast and spatial and temporal modulation were varied. 2. X- and Y-cells were readily distinguished by their spatial tuning. Y-cells had much lower preferred spatial frequencies and spatial resolution than X-cells. Within each functional class (X or Y), however, lagged and nonlagged cells were similar in their spatial response properties. Thus the lagged/nonlagged distinction is not one related to the spatial domain. 3. In the temporal domain X- and Y-cells showed little difference in temporal tuning, whereas lagged and nonlagged cells showed distinctive response properties. The temporal tuning functions of lagged cells were slightly shifted toward lower frequencies with optimal temporal frequencies of lagged X-cells averaging an octave lower than those of nonlagged X-cells. Temporal resolution was much lower in lagged X- and Y-cells than in their nonlagged counterparts. 4. The most dramatic differences between lagged and nonlagged cells appeared in the timing of their responses, as measured by the phase of the response relative to the sinusoidal luminance modulation of a spot centered in the receptive field. Response phase varied approximately linearly with temporal frequency. The slope of the phase versus frequency line is a measure of total integration time, which we refer to as visual latency. Lagged cells has much longer latencies than nonlagged cells. 5. The intercept of the phase versus frequency line is a measure of when in the stimulus cycle the cell responds: we refer to this as the intrinsic or absolute phase of the cell. This measure of response timing not only distinguished lagged and nonlagged cells well but also covaried with the sustained or transient nature of cells' responses to flashed stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)
    Full-text · Article · Aug 1990 · Journal of Neurophysiology
  • Allen L. Humphrey · Rosalyn E. Weller
    [Show abstract] [Hide abstract]
    ABSTRACT: In the companion paper (Humphrey and Weller, '88), we demonstrated 2 physiologically different groups of X-cells (XL and XN) in the A-laminae of the cat lateral geniculate nucleus. In order to investigate their possible morphological correlates, we iontophoresed horseradish peroxidase intracellularly into physiologically identified XL- and XN-cells and examined their light microscopic appearance. The 11 HRP-labeled XL-cells constituted the smallest relay neurons in the A-laminae, and were similar morphologically. All had small somata (mean soma size = 236 μm2), very thin (< 1.0 μm) axons, few primary dendrites, and narrow, sinuous distal dendrites, which usually formed trees that were oriented perpendicular to laminar borders. The dendrites could be smooth or display beadlike varicosities, hairlike appendages, and/or occasional complex stalked appendages, but their most consistent feature was numerous clusters of grapelike dendritic appendages located at or near dendritic branch points. The 14 labeled XN-cells were structurally more heterogeneous, and they included relay neurons and interneurons. Eight of 11 XN-relay cells differed markedly from the XL-cells. These XN-cells were multipolar neurons with medium to large somata (mean soma size = 365 μm2), small to medium-size axons (1.0–2.0 μm), numerous primary dendrites, and straight distal dendrites that formed radially symmetric trees. The dendrites of the cells were largely smooth, except for occasional spines and/or hairs, and they were devoid of grapelike and other complex appendages. The three other XN-relay neurons had morphologies either similar to XL-cells or intermediate between XL-cells and more simple, multipolar XN-relay cells, but two of these cells had larger somata and axons than most XL-cells. Finally, three XN-cells were intrageniculate interneurons, which possessed small somata (mean soma size = 174 μm2), fine sinuous dendrites covered with beadlike varicosities on stalked appendages, and no obvious axon. These results reveal that, despite minor overlap, there are marked structural differences between XL- and XN-cells. Among the relay cells, these differences relate to soma and axon diameter, dendritic orientation, and the presence or absence of grapelike dendritic appendages. Our finding that interneurons were strongly excited at short latencies by spot onset supports the hypothesis (Mastronarde, '87a; Humphrey and Weller, '88) that such interneurons provide the major inhibitory input to XL-cells, and that this input is important in generating the spot-induced early dips in XL-cell discharge.
    No preview · Article · Feb 1988 · The Journal of Comparative Neurology
  • Allen L. Humphrey PhD · Rosalyn E. Weller
    [Show abstract] [Hide abstract]
    ABSTRACT: The latencies and visual response properties of 202 X-cells in the A-laminae of the cat dorsal lateral geniculate nucleus (LGN) were examined to investigate the recent claim (Mastronarde, '85,'87a) that functionally different groups of X-cells reside there. Two groups of X-cells were found, which differed in their extracellularly recorded responses to spots of light flashed within their receptive fields. One group, constituting one-third of the sample, responded to spot onset with a profound and often long-lasting dip in discharge rate, such that cell discharge usually did not reach half maximum until ≥ 100 msec after spot onset. About 70% of these cells also displayed a transient discharge at spot offset. These cells correspond to Mastronarde's lagged X-cells, and we similarly refer to them as XL-cells. The second group, constituting the remainder of the X-cell population, generally responded to spot onset with a short latency (≤ 60 msec) brisk discharge, no detectable XL-type dip, and a rapid reduction in firing at spot offset. We refer to these neurons as nonlagged (XN) X-cells; this group probably encompasses all of Mastronarde's non-XL-cells. Despite some overlap, the XL- and XN-cells differed in numerous other features. Compared to XN-cells, XL-cells exhibited: 1) lower peak rates of discharge and more uniform firing during spot onset; 2) slightly longer latencies and markedly lower probabilities of discharge to optic chiasm stimulation; 3) consistently lower geniculocortical conduction velocities; and 4) markedly lower optimal temporal frequencies when tested with drifting sine wave gratings. No differences were found between the two cell groups in optimal spatial frequency, spatial resolution, or receptive field center size, and there were equal proportions of on- and off-center types of XL- and XN-cells. Analyses of one- and two-dimensional plots of the physiological measures indicate that XL- and XN-cells constitute a physiological continuum. However, the two groups occupy opposite sides of the continuum on many of the measures, with little overlap and with few (< 5%) cells with intermediate properties. Therefore, XL-cells may be considered a distinct, readily identifiable group. These findings confirm and extend Mastronarde's ('87a) observations on functional differences among geniculate X-cells. The existence of XL-cells in the LGN and their apparent absence in the retina (Mastronarde, '87b) add support to the view that the LGN operates as more than a simple relay nucleus, passing on to the cortex in largely unaltered form the signals received from the retina. The differences between XL- and XN-cells suggest that an important transformation occurs in the LGN among XL-cells, and that it is in the temporal domain rather than in the spatial domain.
    No preview · Article · Feb 1988 · The Journal of Comparative Neurology
  • AL Humphrey · M Sur · D J Uhlrich · S M Sherman
    [Show abstract] [Hide abstract]
    ABSTRACT: Horseradish peroxidase was injected intracellularly into single, physiologically identified X- and Y-cell geniculocortical axons that projected to area 18, to the 17/18 border region, or to both areas 17 and 18 via branching axons. The axon terminal fields in cortex were labeled anterogradely, and the cell bodies of the axons in the A-laminae, lamina C, and the medial interlaminar nucleus (MIN) of the dorsal lateral geniculate nucleus (LGN) were labeled retrogradely. The laminar projections in area 18 of eight Y-cells and one geniculate, non-Y-cell were analyzed. Most of the cells arborized densely within layer IVa and the lower 200 to 400 microns of layer III. Most provided little or no input to layer IVb or layer VI. Thus, the laminar projections of Y-cells to layer IV of area 18 were similar to those of their area 17 counterparts, although the input to layer III was greater and rose much higher in area 18 than in area 17. The terminal arbors in area 18 were two to three times larger in lateral extent than those in area 17. They spread over 2.0 to 2.8 mm2 of layer IV and occupied proportionately much greater regions of area 18 than the Y-cell arbors in area 17. This may partially account for the large receptive fields of cortical cells in area 18, and it indicates that a small region of area 18 may receive converging inputs from a relatively wide retinotopic region of the LGN. The terminal arbors were also highly asymmetric, generally being two to four times longer anteroposteriorly than mediolaterally. These asymmetric arbors may form the structural basis for the anisotropic organization of the retinotopic map in area 18. We recovered three cells (two Y, one X) whose axons arborized in the border zone between areas 17 and 18. One Y-cell axon had a receptive field located in the ipsilateral visual hemifield and it arborized in a small region restricted almost exclusively to the border zone. The other two cells had receptive fields on or adjacent to the vertical meridian, and they terminated on either side of the 17/18 border region as well as within it. Thus, geniculate afferents representing the ipsilateral hemifield or the vertical meridian appear to have different patterns of termination on and adjacent to the 17/18 border zone. Also, some X-cell input may invade area 18 in the region immediately adjacent to the border zone.(ABSTRACT TRUNCATED AT 400 WORDS)
    No preview · Article · Mar 1985 · The Journal of Comparative Neurology
  • Source
    A L Humphrey · M Sur · D J Uhlrich · S M Sherman
    [Show abstract] [Hide abstract]
    ABSTRACT: Horseradish peroxidase was injected intracellularly into single, physiologically-identified X- and Y-cell geniculocortical axons projecting to area 17 of the cat. This injection anterogradely labeled the axon terminal fields in cortex and retrogradely labeled the somata of these same axons in laminae A and A1 of the lateral geniculate nucleus (LGN). The laminar projections of 21 X- and 15 Y-cell axons were analyzed. For these, the laminar terminations of ten X- and seven Y-cell axons were also related to their cells' positions in the A-laminae. The terminal fields of X- and Y-cell axons overlapped substantially in layers IV and VI of area 17. Some X-cells terminated mainly in IVb, others mainly in IVa, and still others throughout IVa and IVb. The latter two groups also projected up to 100 μm into lower layer III. Y-cells terminated primarily in layer IVa and projected up to 200 μm into lower layer III. Some also arborized throughout the depth of layer IVb. Both X- and Y-cell axons terminated throughout the depth of layer VI, although more so in the upper half. We found no relationship between the diameter of the parent axon and its sublaminar projection within layer IV. Within layer IV, X-cell axons generally terminated within a single, continuous clump and had surface areas of 0.6 to 0.9 mm2. Axons of Y-cells often terminated in two to three separate clumps, separated by terminal free gaps 400 to 600 μm wide. Their total surface areas, including gaps, were 1.0 to 1.8 mm2, roughly 1.6 times the surface areas of X-cell axons. Despite considerable overlap, Y-cell arbors contained significantly more boutons than did X-cell arbors. The sublaminar projections of the X- and Y-cell axons within layer IV reflected the locations of the cells' somata within the depth of the A-laminae. X-cells located in the dorsal or ventral thirds of the depths of the laminae projected mainly to layer IVa or throughout layer IV in cortex. Those located in the central thirds projected mainly to layer IVb. Y-cells showed a similar positional relationship, but they appeared to follow different rules. Y-cells in the outer thirds of the A-laminae projected mainly to layer IVa; those in the central thirds, in addition, expanded their projections to include layer IVb. In general, larger sized somata in the LGN gave rise to more widely spreading terminal arbors and greater numbers of boutons in cortex than did smaller somata. However, we found no significant relationship between soma size and terminal arbor extent or total boutons within each cell class (X or Y), and thus the correlation noted may result from Y-cells having larger somata and terminal arbor extents than do X-cells. Our results demonstrate considerable heterogeneity in the laminar projections of X- and Y-cell axons within area 17. This heterogeneity reflects an underlying sublaminar organization of the parent somata within the depths of the LGN A-laminae. The functional significance of this organization, both in the LGN and cortex, is unknown. It is clear, however, that the result of the geniculocortical projection upon layer IV is not to segregate X- and Y- afferents into lower and upper tiers. Rather, it may be to re-establish a positional organization existing within the depths of the LGN laminae.
    Full-text · Article · Mar 1985 · The Journal of Comparative Neurology

Publication Stats

2k Citations
124.89 Total Impact Points

Institutions

  • 1988-2008
    • University of Pittsburgh
      • • Department of Radiology
      • • Department of Neurobiology
      • • Center for Neuroscience
      Pittsburgh, Pennsylvania, United States
  • 1991
    • University of Colorado at Boulder
      • Department of Molecular, Cellular, and Developmental Biology (MCDB)
      Boulder, CO, United States
  • 1982-1991
    • State University of New York
      New York, New York, United States
  • 1983
    • University of Washington Seattle
      • Department of Ophthalmology
      Seattle, Washington, United States
  • 1977-1980
    • Duke University
      Durham, North Carolina, United States