Jingkang Guo

Shanghai University, Shanghai, Shanghai Shi, China

Are you Jingkang Guo?

Claim your profile

Publications (4)13.18 Total impact

  • Jingkang Guo · Jian Wu · Qian Ji · Chao Wang · Lei Luo · Yi Yuan · Yonghua Wang · Jian Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The heat shock transcription factors (HSFs) are the major heat shock factors regulating the heat stress response. They participate in regulating the expression of heat shock proteins (HSPs), which are critical in the protection against stress damage and many other important biological processes. Study of the HSF gene family is important for understanding the mechanism by which plants respond to stress. The completed genome sequences of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) constitute a valuable resource for comparative genomic analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. The identification of phylogenetic relationships among HSF proteins in these species is a fundamental step to unravel the functionality of new and yet uncharacterized genes belonging to this family. In this study, the full complement of HSF genes in rice and Arabidopsis has probably been identified through the genome-wide scan. Phylogenetic analyses resulted in the identification of three major clusters of orthologous genes that contain members belonging to both species, which must have been represented in their common ancestor before the taxonomic splitting of the angiosperms. Further analysis of the phylogenetic tree reveals a possible dicot specific gene group. We also identified nine pairs of paralogs, as evidence for studies on the evolution history of rice HSF family and rice genome evolution. Expression data analysis indicates that HSF proteins are widely expressed in plants. These results provide a solid base for future functional genomic studies of the HSF gene family in rice and Arabidopsis.
    No preview · Article · Mar 2008 · Journal of Genetics and Genomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: A change in the normal concentration of essential trace elements in the human body might lead to major health disturbances. In this study, hair samples were collected from 115 human subject, including 55 healthy people and 60 patients with prostate cancer. The concentrations of 20 trace elements (TEs) in these samples were measured by inductively coupled plasma-mass spectrometry. Asupport vector machine was used to investigate the relationship between TEs and prostate cancer. It is found that, among the 20 TEs, 10 (Mg P, K, Ca, Cr, Mn, Fe. Cu, Zn, and Se) are related to the risk of prostate cancer. These 10 TEs were used to build the prediction model for prostate cancer. The model obtained can satisfactorily distinguish the healthy samples from the cancer samples. Furthermore, the cross-validation by leaving-one method proved that the prediction ability of this model reaches as high as 95.8%. It is practical to predict the risk of prostate cancer using this model in the clinics.
    No preview · Article · Jul 2007 · Biological Trace Element Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic/helix-loop-helix (bHLH) transcription factors and their homologs form a large family in plant and animal genomes. They are known to play important roles in the specification of tissue types in animals. On the other hand, few plant bHLH proteins have been studied functionally. Recent completion of whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) allows genome-wide analysis and comparison of the bHLH family in flowering plants. We have identified 167 bHLH genes in the rice genome, and their phylogenetic analysis indicates that they form well-supported clades, which are defined as subfamilies. In addition, sequence analysis of potential DNA-binding activity, the sequence motifs outside the bHLH domain, and the conservation of intron/exon structural patterns further support the evolutionary relationships among these proteins. The genome distribution of rice bHLH genes strongly supports the hypothesis that genome-wide and tandem duplication contributed to the expansion of the bHLH gene family, consistent with the birth-and-death theory of gene family evolution. Bioinformatics analysis suggests that rice bHLH proteins can potentially participate in a variety of combinatorial interactions, endowing them with the capacity to regulate a multitude of transcriptional programs. In addition, similar expression patterns suggest functional conservation between some rice bHLH genes and their close Arabidopsis homologs.
    Full-text · Article · Sep 2006 · Plant physiology
  • Zhaochun ZHANG · Longyi YUE · Jingkang GUO
    [Show abstract] [Hide abstract]
    ABSTRACT: Raman spectra of gallium phosphide (GaP) nanosolids (unheated and heat-treated at 598 and 723 K, respectively) were investigated. It was observed that both the longitudinal optical mode (LO) and the transverse optical mode (TO) displayed an asymmetry on the low-wavenumber side. The scattering bands were fitted to a sum of four Lorentzians which were assigned to the LO mode, surface phonon mode, TO mode, and a combination of Ga-O-P symmetric bending and sum band formed from the X-point TA + LA phonons, respectively. Analysis of the characteristic of surface phonon mode revealed that the surface phonon peak of the GaP nanosolids could be confirmed. In the infrared spectrum of the GaP nanoparticles, we observed the bands on account of symmetric stretching and bending of PO2, as well as stretching of Ga-O. The Raman scattering intensity arising from the Ga-O-P linkages increased as increasing the heat-treatment temperature.
    No preview · Article · Jun 2006 · Rare Metals

Publication Stats

253 Citations
13.18 Total Impact Points


  • 2006-2008
    • Shanghai University
      • • School of Life Sciences
      • • College of Sciences
      Shanghai, Shanghai Shi, China