M. Spaans

Leiden University, Leyden, South Holland, Netherlands

Are you M. Spaans?

Claim your profile

Publications (239)702.13 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.
    Full-text · Article · Jan 2016 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.
    Full-text · Article · Dec 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    S. Hocuk · S. Cazaux · M. Spaans · P. Caselli
    [Show abstract] [Hide abstract]
    ABSTRACT: In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of grain surface chemistry (GSC) on star formation and its impact on the initial mass function (IMF). We follow a contracting translucent cloud in which we treat the gas-grain chemical interplay in detail, including the process of freeze-out. We perform 3d hydrodynamical simulations under three different conditions, a pure gas-phase model, a freeze-out model, and a complete chemistry model. The models display different thermal evolution during cloud collapse. The equation of state (EOS) of the gas becomes softer with CO freeze-out and the results show that at the onset of star formation, the cloud retains its evolution history such that the number of formed stars differ (by 7%) between the three models. While the stellar mass distribution results in a different IMF when we consider pure freeze-out, with the complete treatment of the GSC, the divergence from a pure gas-phase model is minimal. We find that the impact of freeze-out is balanced by the non-thermal processes; chemical and photodesorption. We also find an average filament width of 0.12 pc ($\pm$0.03 pc), and speculate that this may be a result from the changes in the EOS caused by the gas-dust thermal coupling. We conclude that GSC plays a big role in the chemical composition of molecular clouds and that surface processes are needed to accurately interpret observations, however, that GSC does not have a significant impact as far as star formation and the IMF is concerned.
    Full-text · Article · Nov 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5\%, while it is around 50\% for disks around TTauri stars. The reason for this is still unclear. In this study, we want to find an explanation for the different detection rates between low mass and high mass pre-main-sequence stars (PMSs) in the mid-IR regime. We run disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modeling code ProDiMo. We produce convolved spectra at the resolution of Spitzer IRS, JWST MIRI and VLT VISIR spectrographs. We apply random noise derived from typical Spitzer spectra for a direct comparison with observations. The strength of the mid-IR water lines correlates directly with the luminosity of the central star. We explored a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size and size power law distribution index. The models show that it is possible to suppress the water emission, however, current observations are not sensitive enough to detect mid-IR lines in disks for most of the explored parameters. The presence of noise in the spectra, combined with the high continuum flux (noise level is proportional to the continuum flux), is the most likely explanation for the non detections towards Herbig stars. Mid-IR spectra with resolution higher than 20000 are needed to investigate water in protoplanetary disks. Intrinsic differences in disk structure, e.g. inner gaps, gas-to-dust ratio, dust size and distribution, and inner disk scale height, between Herbig and TTauri star disks are able to explain a lower water detection rate in disks around Herbig stars.
    Full-text · Article · Oct 2015 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present high resolution (0.″ 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
    No preview · Article · Sep 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present early results from the JCMT (James Clerk Maxwell Telescope) Plane Survey (JPS), which has surveyed the northern inner Galactic plane between longitudes ℓ = 7° and ℓ = 63° in the 850-μm continuum with SCUBA-2 (Submm Common-User Bolometer Array 2), as part of the JCMT Legacy Survey programme. Data from the ℓ = 30° survey region, which contains the massive-star-forming regions W43 and G29.96, are analysed after approximately 40 per cent of the observations had been completed. The pixel-to-pixel noise is found to be 19 mJy beam−1 after a smooth over the beam area, and the projected equivalent noise levels in the final survey are expected to be around 10 mJy beam−1. An initial extraction of compact sources was performed using the FellWalker method, resulting in the detection of 1029 sources above a 5σ surface-brightness threshold. The completeness limits in these data are estimated to be around 0.2 Jy beam−1 (peak flux density) and 0.8 Jy (integrated flux density) and are therefore probably already dominated by source confusion in this relatively crowded section of the survey. The flux densities of extracted compact sources are consistent with those of matching detections in the shallower APEX (Atacama Pathfinder Experiment) Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. We analyse the virial and evolutionary state of the detected clumps in the W43 star-forming complex and find that they appear younger than the Galactic-plane average.
    Full-text · Article · Sep 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO$^+$ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the $J=16-15$, $J=12-11$, and $J=11-10$ transitions of $^{12}$CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-$J$ CO, HCN and HCO$^+$ emission lines, including maps of the HCN $J=8-7$ and HCO$^+$ $J=9-8$ transitions. The excitation conditions of $^{12}$CO, HCO$^+$ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO$^+$ molecules toward M17 SW. The LSED shape, particularly the high-$J$ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions. The critical magnetic field criterion implies that the cold cloudlets at two positions are partially controlled by processes that create and dissipate internal motions. Supersonic but sub-Alfv\'enic velocities in the cold component at most selected positions indicates that internal motions are likely MHD waves. Magnetic pressure dominates thermal pressure in both gas components at all selected positions, assuming random orientation of the magnetic field. The magnetic pressure of a constant magnetic field throughout all the gas phases can support the total internal pressure of the cold components, but it cannot support the internal pressure of the warm components. If the magnetic field scales as $B \propto n^{2/3}$, then the evolution of the cold cloudlets at two selected positions, and the warm cloudlets at all selected positions, will be determined by ambipolar diffusion.
    Full-text · Article · Aug 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate which properties of protoplanetary disks around T Tauri stars affect the physics and chemistry in the regions where mid- and far-IR water lines originate and their respective line fluxes. We search for diagnostics for future observations. With the code ProDiMo, we build a series of models exploring a large parameter space, computing rotational and rovibrational transitions of water in nonlocal thermodynamic equilibrium (non-LTE). We select a sample of transitions in the mid- IR regime and the fundamental ortho and para water transitions in the far-IR. We investigate the chemistry and the local physical conditions in the line emitting regions. We calculate Spitzer spectra for each model and compare far-IR and mid-IR lines. In addition, we use mid-IR colors to tie the water line predictions to the dust continuum. Parameters affecting the water line fluxes in disks by more than a factor of three are : the disk gas mass, the dust-to-gas mass ratio, the dust maximum grain size, ISM(InterStellarMedium) UV radiation field, the mixing parameter of Dubrulle settling, the disk flaring parameter, and the dust size distribution. The first four parameters affect the mid-IR lines much more than the far-IR lines. A key driver behind water spectroscopy is the dust opacity, which sets the location of the water line emitting region. We identify three types of parameters. Parameters, such as dust-to-gas ratio, ISM radiation field, and dust size distribution, affect the mid-IR lines more, while the far-IR transitions are more affected by the flaring index. The gas mass greatly affects lines in both regimes. Higher spectral resolution and line sensitivities, like from the James Webb Space Telescope, are needed to detect a statistically relevant sample of individual water lines to distinguish further between these types of parameters.
    Preview · Article · Aug 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis. We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and six vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 10$^5$ and 10$^7$ cm$^{-3}$. The spectrum is dominated by vibrationally excited HC$_3$N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find high abundances of HC$_3$N, SiO, H$_2$S, and c-HCCCH and a low CH$_3$OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments. The similar molecular abundances observed towards NCG 4418 and Arp 220 are consistent with a hot gas-phase chemistry, with the relative abundances of SiO and CH$_3$OH being regulated by shocks and X-ray driven dissociation. The bright emission from vibrationally excited species confirms the presence of a compact IR source, with an effective diameter $<$5 pc and brightness temperatures $>$350 K. The molecular abundances and the vibrationally excited spectrum are consistent with a young AGN/starburst system. We suggest that NGC 4418 may be a template for a new kind of chemistry and excitation, typical of compact obscured nuclei (CON). Because of the narrow line widths and bright molecular emission, NGC 4418 is the ideal target for further studies of the chemistry in CONs.
    Preview · Article · Jun 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular hydrogen is the most abundant molecule in the Universe. It is thought that a large portion of H2 forms by association of hydrogen atoms to polycyclic aromatic hydrocarbons (PAHs). We model the influence of PAHs on total H2 formation rates in photodissociation regions (PDRs) and assess the effect of these formation rates on the total cloud structure. We set up a chemical kinetic model at steady state in a PDR environment and included adiative transfer to calculate the chemistry at different depths in the PDR. This model includes known dust grain chemistry for the formation of H2 and a H2 formation mechanism on PAHs. Since H2 formation on PAHs is impeded by thermal barriers, this pathway is only efficient at higher temperatures (T > 200 K). At these temperatures the conventional route of H2 formation via H atoms physisorbed on dust grains is no longer feasible, so the PAH mechanism enlarges the region where H2 formation is possible. We find that PAHs have a significant influence on the structure of PDRs. The extinction at which the transition from atomic to molecular hydrogen occurs strongly depends on the presence of PAHs, especially for PDRs with a strong external radiation field. A sharp spatial transition between fully dehydrogenated PAHs on the outside of the cloud and normally hydrogenated PAHs on the inside is found. As a proof of concept, we use coronene to show that H2 forms very efficiently on PAHs, and that this process can reproduce the high H2 formation rates derived in several PDRs.
    Full-text · Article · Apr 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high resolution (0."4) IRAM PdBI and ALMA mm and submm observations of the (Ultra) Luminous Infrared Galaxies ((U)LIRGs) IRAS17208-0014, Arp220, IC860 and Zw049.057 that reveal intense line emission from vibrationally excited (v2=1) J=3-2 and 4-3 HCN. The emission is emerging from buried, compact (r<17-70 pc) nuclei that have very high implied mid-infrared surface brightness >5e13 Lsun/kpc2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, v2=1, lines of HCN are excited by intense 14 micron mid-infrared emission and are excellent probes of the dynamics, masses and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1e24 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, the ground vibrational state (v=0), J=3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions due to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early type spiral LIRGs and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
    Full-text · Article · Apr 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herschel/PACS observations of 29 local (ultra)luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 μm Π3/2 J = 9/2-7/2 line (W eq(OH65)) with lower level energy E low 300 K, is anticorrelated with the [C II]158 μm line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 μm far-infrared color. While all sources are in the active L IR/M H2 > 50L ☉/M ☉ mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at L FIR/M H2 100 L ☉/M ☉. In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 μm absorption. Combined with observations of the OH 71 μm Π1/2 J = 7/2-5/2 doublet (E low 415 K), radiative transfer models characterized by the equivalent dust temperature, T dust, and the continuum optical depth at 100 μm, τ100, indicate that strong [C II]158 μm deficits are associated with far-IR thick (τ100 0.7, N H 1024 cm–2), warm (T dust 60 K) structures where the OH 65 μm absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high L FIR/M H2 ratios and columns, the presence of these structures is expected to give rise to strong [C II] deficits. W eq(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is 30%-50% in sources with high W eq(OH65). Sources with high W eq(OH65) have surface densities of both L IR and M H2 higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum)nuclear starburst-AGN co-evolution.
    No preview · Article · Feb 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Ultra) Luminous Infrared Galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 $\mu$m) luminosities ($L_{LIRG}>10^{11} $L$_\odot$ and $L_{ULIRG}>10^{12}$ L$_\odot$). The Herschel Comprehensive ULIRG Emission Survey (HerCULES; PI van der Werf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10$^{11}\leq L_\odot \geq10^{13}$). With the \emph{Herschel Space Observatory}, we observe [CII] 157 $\mu$m, [OI] 63 $\mu$m, and [OI] 145 $\mu$m line emission with PACS, CO J=4-3 through J=13-12, [CI] 370 $\mu$m, and [CI] 609 $\mu$m with SPIRE, and low-J CO transitions with ground-based telescopes. The CO ladders of the sample are separated into three classes based on their excitation level. In 13 of the galaxies, the [OI] 63 $\mu$m emission line is self absorbed. Comparing the CO excitation to the IRAS 60/100 $\mu$m ratio and to far infrared luminosity, we find that the CO excitation is more correlated to the far infrared colors. We present cooling budgets for the galaxies and find fine-structure line flux deficits in the [CII], [SiII], [OI], and [CI] lines in the objects with the highest far IR fluxes, but do not observe this for CO $4\leq J_{upp}\leq13$. In order to study the heating of the molecular gas, we present a combination of three diagnostic quantities to help determine the dominant heating source. Using the CO excitation, the CO J=1-0 linewidth, and the AGN contribution, we conclude that galaxies with large CO linewidths always have high-excitation CO ladders, and often low AGN contributions, suggesting that mechanical heating is important.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We probe the column densities and masses traced by the ionized and neutral atomic carbon with spectrally resolved maps, and compare them to the diffuse and dense molecular gas traced by [C I] and low-$J$ CO lines toward the star-forming region M17SW. We mapped a 4.1pc x 4.7pc region in the [C I] 609 m$\mu$ line using the APEX telescope, as well as the CO isotopologues with the IRAM 30m telescope. We analyze the data based on velocity channel maps that are 1 km/s wide. We correlate their spatial distribution with that of the [C II] map obtained with SOFIA/GREAT. Optically thin approximations were used to estimate the column densities of [C I] and [C II] in each velocity channel. The spatial distribution of the [C I] and all CO isotopologues emission was found to be associated with that of [C II] in about 20%-80% of the mapped region, with the high correlation found in the central (15-23 km/s ) velocity channels. The excitation temperature of [C I] ranges between 40 K and 100 K in the inner molecular region of M17 SW. Column densities in 1 km/s channels between ~10$^{15}$ and ~10$^{17}$ cm$^{-2}$ were found for [C I]. Just ~20% of the velocity range (~40 km/s) that the [C II] line spans is associated with the star-forming material traced by [C I] and CO. The total gas mass estimated from the [C II] emission gives a lower limit of ~4.4x10$^3$ $M_{\odot}$. At least 64% of this mass is not associated with the star-forming material in M17SW. We also found that about 36%, 17%, and 47% of the [C II] emission is associated with the HII, HI, and H_2 regimes, respectively. Comparisons with the H41$\alpha$ line shows an ionization region mixed with the neutral and part of the molecular gas, in agreement with the clumped structure and dynamical processes at play in M17SW. These results are also relevant to extra-galactic studies in which [C II] is often used as a tracer of star-forming material.
    Full-text · Article · Jan 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herschel/PACS observations of 29 local (Ultra-)Luminous Infrared Galaxies, including both starburst and AGN-dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 um Pi_{3/2} J=9/2-7/2 line (W_{eq}(OH65)) with lower level energy E_{low}~300 K, is anticorrelated with the [C ii]158 um line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 um far-infrared color. While all sources are in the active L_{IR}/M_{H2}>50 Lsun/Msun mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at L_{FIR}/M_{H2}~100 Lsun/Msun. In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 um absorption. Combined with observations of the OH 71 um Pi_{1/2} J=7/2-5/2 doublet (E_{low}~415 K), radiative transfer models characterized by the equivalent dust temperature, Tdust, and the continuum optical depth at 100 um, tau_{100}, indicate that strong [C ii]158 um deficits are associated with far-IR thick (tau_{100}>~0.7, N_{H}>~10^{24} cm^{-2}), warm (Tdust>~60 K) structures where the OH 65 um absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high L_{FIR}/M_{H2} ratios and columns, the presence of these structures is expected to give rise to strong [C ii] deficits. W_{eq}(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is >~30-50% in sources with high W_{eq}({OH65}). Sources with high W_{eq}({OH65}) have surface densities of both L_{IR} and M_{H2} higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum)nuclear starburst-AGN co-evolution.
    Full-text · Article · Dec 2014
  • Source
    W. A. Baan · A. F. Loenen · M. Spaans
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular emission-line observations of isolated Galactic star-forming regions are used to model the physical properties of the molecular interstellar medium in these systems. Observed line ratios are compared with the results predicted by models that incorporate gas-phase chemistry and the heating by stellar radiation and non-radiative feedback processes. The line ratios of characteristic tracer molecules may be interpreted using the contributions of two distinct components: a cold (40-50 K) and high-density (105-105.5 cm-3) photon-dominated region (PDR) with a nominal UV flux density and a warm (̃300 K) mechanical heating-dominated region (MHDR) with a slightly lower density (104.5-105 cm-3). The relative contributions of these structural components are used to model the observed line ratios. Ionized species may be better modelled by adopting an increase of the cosmic ray flux towards the Galactic Centre and the sulphur abundance should depleted by a factor of 200-400 relative to solar values. The line ratios of the Galactic sample are found to be very similar to those of the integrated signature of prominent (ultra)luminous IR Galaxies. The PDRs and MHDRs in the isolated Galactic regions may be modelled with slightly higher mean densities than in extragalactic systems and a higher MHDR temperature resulting from non-radiative mechanical heating. Multimolecular studies are effective in determining the physical and chemical properties of star formation regions by using characteristic line ratios to diagnose their environment. The addition of more molecular species will reduce the existing modelling redundancy.
    Full-text · Article · Nov 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-resolution (0.3'') ALMA 870um imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey (UDS) field and investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10kpc scales. We derive a median intrinsic angular size of FWHM=0.30$\pm$0.04'' for the 23 SMGs in the sample detected at a signal-to-noise ratio (SNR) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4$\pm$0.2kpc. A stacking analysis of the SMGs detected at an SNR <10 shows they have sizes consistent with the 870um-bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ~250um sizes of SMGs are consistent with studies of resolved 12CO (J=3-2 to 7-6) emission lines, but that sizes derived from 1.4GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kpc in extent, with a median star formation rate surface density of 90$\pm$30Msol/yr/kpc$^2$, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.
    Full-text · Article · Nov 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CO, $^{13}$CO and C$^{18}$O ${\it J}$ = 3--2 observations are presented of the Ophiuchus molecular cloud. The $^{13}$CO and C$^{18}$O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F and J regions. The optically thin(ner) C$^{18}$O line is used as a column density tracer, from which the gravitational binding energy is estimated to be $4.5 \times 10^{39}$ J (2282 $M_\odot$ km$^2$ s$^{-2}$). The turbulent kinetic energy is $6.3 \times 10^{38}$ J (320 $M_\odot$ km$^2$ s$^{-2}$), or 7 times less than this, and therefore the Oph cloud as a whole is gravitationally bound. Thirty protostars were searched for high velocity gas, with eight showing outflows, and twenty more having evidence of high velocity gas along their lines-of-sight. The total outflow kinetic energy is $1.3 \times 10^{38}$ J (67 $M_\odot$ km$^2$ s$^{-2}$), corresponding to 21$\%$ of the cloud?s turbulent kinetic energy. Although turbulent injection by outflows is significant, but does ${\it not}$ appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii $\sim$ 0.01--0.05 pc, virial masses $\sim$ 0.1--12 $M_\odot$, luminosities $\sim$ 0.001--0.1 K~km s$^{-1}$ pc$^{-2}$, and excitation temperatures $\sim$ 10--50K. These are consistent with the standard GMC based size-line width relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to sub solar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.
    Full-text · Article · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This contribution gathers the contents of the white paper submitted by the UV community to the Call issued by the European Space Agency in March 2013, for the definition of the L2 and L3 missions in the ESA science program. We outlined the key science that a large UV facility would make possible and the instrumentation to be implemented. The growth of luminous structures and the building blocks of life in the Universe began as primordial gas was processed in stars and mixed at galactic scales. The mechanisms responsible for this development are not well-understood and have changed over the intervening 13 billion years. To follow the evolution of matter over cosmic time, it is necessary to study the strongest (resonance) transitions of the most abundant species in the Universe. Most of them are in the ultraviolet (UV; 950 Å–3000 Å) spectral range that is unobservable from the ground. A versatile space observatory with UV sensitivity a factor of 50–100 greater than existing facilities will revolutionize our understanding of the Universe. Habitable planets grow in protostellar discs under ultraviolet irradiation, a by-product of the star-disk interaction that drives the physical and chemical evolution of discs and young planetary systems. The electronic transitions of the most abundant molecules are pumped by this UV field, providing unique diagnostics of the planet-forming environment that cannot be accessed from the ground. Earth’s atmosphere is in constant interaction with the interplanetary medium and the solar UV radiation field. A 50–100 times improvement in sensitivity would enable the observation of the key atmospheric ingredients of Earth-like exoplanets (carbon, oxygen, ozone), provide crucial input for models of biologically active worlds outside the solar system, and provide the phenomenological baseline to understand the Earth atmosphere in context.
    Full-text · Article · Nov 2014 · Astrophysics and Space Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present FIR [50-300 μm]–CO luminosity relations (i.e., ) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z ≤ 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs; L IR[8-1000 μm] > 1011L ☉) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR–CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR–CO luminosity relations (i.e., α 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (β ~ 2). In the simplest physical scenario, this is expected from the (also) linear FIR–(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (~100 K) and dense (>104 cm–3) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions, which remain highly excited from J = 6-5 up to J = 13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.
    Full-text · Article · Oct 2014 · The Astrophysical Journal

Publication Stats

3k Citations
702.13 Total Impact Points

Institutions

  • 2007-2015
    • Leiden University
      • Leiden Observartory
      Leyden, South Holland, Netherlands
    • University of Bonn
      • Argelander-Institute of Astronomy
      Bonn, North Rhine-Westphalia, Germany
  • 2006-2015
    • University of Groningen
      • Kapteyn Astronomical Institute
      Groningen, Groningen, Netherlands
  • 1998-2009
    • Harvard-Smithsonian Center for Astrophysics
      Cambridge, Massachusetts, United States
  • 1997-2009
    • Johns Hopkins University
      • Department of Physics and Astronomy
      Baltimore, MD, United States
  • 2003
    • Cornell University
      • Department of Astronomy
      Ithaca, New York, United States
  • 1996
    • Space Telescope Science Institute
      Baltimore, Maryland, United States