Chie Aoki

University of Indonesia, Depok, West Java, Indonesia

Are you Chie Aoki?

Claim your profile

Publications (19)38.46 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Hepatitis C virus (HCV) is a major global health problem, causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Development of well-tolerated regimens with high cure rates and fewer side effects is still much needed. Recently, natural antimicrobial peptides (AMPs) are attracting more attention as biological compounds and can be a good template to develop therapeutic agents, including antiviral agents against a variety of viruses. Various AMPs have been characterized from the venom of different venomous animals including scorpions. Methods The possible antiviral activities of crude venoms obtained from five Egyptian scorpion species (Leiurus quinquestriatus, Androctonus amoreuxi, A. australis, A. bicolor and Scorpio maurus palmatus) were evaluated by a cell culture method using Huh7.5 cells and the J6/JFH1-P47 strain of HCV. Time-of-addition experiments and inactivation of enzymatic activities of the venoms were carried out to determine the characteristics of the anti-HCV activities. Results S. maurus palmatus and A. australis venoms showed anti-HCV activities, with 50% inhibitory concentrations (IC50) being 6.3 ± 1.6 and 88.3 ± 5.8 μg/ml, respectively. S. maurus palmatus venom (30 μg/ml) impaired HCV infectivity in culture medium, but not inside the cells, through virocidal effect. The anti-HCV activity of this venom was not inhibited by a metalloprotease inhibitor or heating at 60°C. The antiviral activity was directed preferentially against HCV. Conclusions S. maurus palmatus venom is considered as a good natural source for characterization and development of novel anti-HCV agents targeting the entry step. To our knowledge, this is the first report describing antiviral activities of Egyptian scorpion venoms against HCV, and may open a new approach towards discovering antiviral compounds derived from scorpion venoms.
    Full-text · Article · Dec 2015 · Virology Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C is a disease caused by hepatitis C virus (HCV) that causes chronic infection, cirrhosis, and hepatocellular carcinoma. The current standard therapy is a combination of pegylated interferon-α plus ribavirin with NS3 protease inhibitors. Addition of NS3 protease inhibitors increases response rates; however, this addition is associated with significant side effects and an increase in the overall cost of the treatment. Therefore, there remains a need to develop safe and inexpensive drugs for the treatment of HCV infections. In this study, we examined the antiviral activity of a crude extract from Dimocarpus longan leaves against HCV (genotype 2a strain JFH1). The D. longan crude extract exhibited anti-HCV activity with a 50% effective concentration (EC50) of 19.4 μg/ml without cytotoxicity. A time-of-addition study demonstrated that the crude extract exerts anti-HCV activity at both the entry and post-entry steps. The crude extract markedly blocked viral entry step through a direct virucidal effect with a marginal inhibition of virion assembly. The co-treatment of the crude extract with cyclosporine A or telaprevir, an NS3 protease inhibitor, had additive and synergistic antiviral effects, respectively. Our findings suggest that the D. longan crude extract may be a candidate of the add-on therapy for HCV infection.
    Full-text · Article · Aug 2015

  • No preview · Conference Paper · Aug 2015

  • No preview · Conference Paper · Dec 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infection is highly prevalent among global populations, with an estimated number of infected patients being 170 million. Approximately 70–80% of patients acutely infected with HCV will progress to chronic liver disease, such as liver cirrhosis and hepatocellular carcinoma, which is a substantial cause of morbidity and mortality worldwide. New therapies for HCV infection have been developed, however, the therapeutic efficacies still need to be improved. Medicinal plants are promising sources for antivirals against HCV. A variety of plants have been tested and proven to be beneficial as antiviral drug candidates against HCV. In this study, we examined extracts, their subfractions and isolated compounds of Ruta angustifolia leaves for antiviral activities against HCV in cell culture. We isolated six compounds, chalepin, scopoletin, γ-fagarine, arborinine, kokusaginine and pseudane IX. Among them, chalepin and pseudane IX showed strong anti-HCV activities with 50% inhibitory concentration (IC50) of 1.7 ± 0.5 and 1.4 ± 0.2 μg/ml, respectively, without apparent cytotoxicity. Their anti-HCV activities were stronger than that of ribavirin (2.8 ± 0.4 μg/ml), which has been widely used for the treatment of HCV infection. Mode-of-action analyses revealed that chalepin and pseudane IX inhibited HCV at the post-entry step and decreased the levels of HCV RNA replication and viral protein synthesis. We also observed that arborinine, kokusaginine and γ-fagarine possessed moderate levels of anti-HCV activities with IC50 values being 6.4 ± 0.7, 6.4 ± 1.6 and 20.4 ± 0.4 μg/ml, respectively, whereas scopoletin did not exert significant anti-HCV activities at 30 μg/ml.
    No preview · Article · Dec 2014 · Fitoterapia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective therapeutic vaccines against virus infection must induce sufficient levels of cell-mediated immune responses against the target viral epitopes and also must avoid concomitant risk factors, such as potential carcinogenic properties. The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) carries a variety of CD4+ and CD8+ T cell epitopes, and induces strong HCV-specific T cell responses, which are correlated with viral clearance and resolution of acute HCV infection. On the other hand, NS3 possesses serine protease and nucleoside triphosphatase (NTPase)/RNA helicase activities, which not only play important roles in viral life cycle but also concomitantly interfere with host defense mechanisms by deregulating normal cellular functions. In this study, we constructed a series of DNA vaccines that express NS3 of HCV. To avoid the potential harm of NS3, we introduced mutations to the catalytic triad of the serine protease (H57A, D81A and S139A) and the NTPase/RNA helicase domain (K210N, F444A, R461Q and W501A) to eliminate the enzymatic activities. Immunization of BALB/c mice with each of the DNA vaccine candidates (pNS3[S139A/K210N], pNS3[S139A/F444A], pNS3[S139A/R461Q] and pNS3[S139A/W501A]) that expresses an NS3 mutant lacking both serine protease and NTPase/helicase activities induced T cell immune responses to the degree comparable to that induced by the wild type NS3 and the NS3/4A complex, as demonstrated by interferon-γ production and cytotoxic T lymphocytes activities against NS3. The present study has demonstrated that plasmids expressing NS3 mutants, NS3(S139A/K210N), NS3(S139A/F444A), NS3(S139A/R461Q) and NS3(S139A/W501A), which lack both serine protease and NTPase/RNA helicase activities, would be good candidates for safe and efficient therapeutic DNA vaccines against HCV infection.
    Full-text · Article · Jun 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo-Pacific region, whose fruits and leaves are among the food sources and also used as a treatment in traditional medicine. In this study, by using the HCV cell culture system, we demonstrated that a methanol extract, its n-hexane and ethyl acetate fractions from M. citrifolia leaves possessed anti-HCV activities with 50%-inhibitory concentration (IC50 ) of 20.6, 6.1 and 6.6 µg/ml, respectively. Bioactivity-guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti-HCV compound present in the extracts (IC50 = 0.3 µg/ml). We also found that pyropheophorbide a possessed anti-HCV activity (IC50 = 0.2 µg/ml). The 50%-cytotoxic concentrations (CC50 ) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 µg/ml, respectively, with selectivity index being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin and pheophytin a barely, or only marginally, exhibited anti-HCV activities. Time-of-addition analysis revealed that pheophorbide a and pyropheophorbide a act at both the entry and the post-entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds to develop antivirals against HCV.
    No preview · Article · Jan 2014 · Microbiology and Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still much needed from clinical and economical points of view. Antiviral substances obtained from medicinal plants are potentially good targets to study. Glycyrrhiza uralensis and G. glabra have been commonly used in both traditional and modern medicine. In this study, we examined extracts of G. uralensis roots and their components for anti-HCV activities using the HCV cell culture system. Our results revealed that a methanol extract of G. uralensis roots and its chloroform fraction possessed anti-HCV activities with 50%-inhibitory concentrations (IC50 ) of 20.0 and 8.0 μg/ml, respectively. Through bioactivity-guided purification and structural analysis, we isolated and identified glycycoumarin, glycyrin, glycyrol and liquiritigenin as anti-HCV compounds, with IC50 being 8.8, 7.2, 4.6 and 16.4 μg/ml, respectively. On the other hand, glycyrrhizin, the most common constituent in G. uralensis, and its monoammonium salt showed only marginal levels of anti-HCV activity. We also found that licochalcone A and glabridin, known as the exclusive constituents of G. inflata and G. glabra, respectively, possessed anti-HCV activities, with IC50 being 2.5 and 6.2 μg/ml, respectively. Another chalcone, isoliquiritigenin, also showed anti-HCV activity, with IC50 of 3.7 μg/ml. Time-of-addition analysis revealed that all the Glycyrrhiza-derived anti-HCV compounds tested in this study act at the post-entry step. In conclusion, our present results suggest that glycycoumarin, glycyrin, glycyrol and liquiritigenin isolated from G. uralensis as well as isoliquiritigenin, licochalcone A and glabridin would be good candidates for seed compounds to develop antivirals against HCV.
    Full-text · Article · Jan 2014 · Microbiology and Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The aim of this study was to examine extracts from Indonesian plants to identify a compound(s) responsible for antiviral activity against hepatitis C virus (HCV). Methods: Huh7it-1 cells, a clone of human hepatocellular carcinoma-derived Huh7 cells, were infected with the HCV genotype 2a strain JFH1 in the presence of crude methanol extracts from the plants. The extracts were further fractionated and purified by anti-HCV bioactivity-guided analysis using a combination of various column chromatography techniques. The isolated compounds were examined for anti-HCV activity and cytotoxicity, and their structures determined by nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. Results: Screening of Indonesian plants revealed that a crude methanol extract from Kalanchoe pinnata exhibited anti-HCV activity with a 50%-inhibitory concentration (IC50) of 17.2 μg/ml. An ethyl acetate fraction was found to possess strong anti-HCV activity, from which three compounds, i.e., quercetin, gallic acid and quercitrin, were isolated. Anti-HCV activity assay revealed that quercetin and gallic acid, but not quercitrin, inhibited HCV production in a dose-dependent manner, with IC50 values of 1.5 and 6.1 μg/ml, respectively, without exhibiting cytotoxicity. A time-of-addition study demonstrated that quercetin acted at the post-entry step whereas gallic acid at both the entry and post-entry steps. Conclusion: An extract from K. pinnata and its constituents, quercetin and gallic acid, could be potentially used as a supplement for the treatment of HCV infection.
    No preview · Article · Jan 2014 · International Journal of Pharmacy and Pharmaceutical Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is a major cause of liver disease and a potential cause of substantial morbidity and mortality worldwide. The overall prevalence of HCV infection is 2%, representing 120 million people worldwide. Current standard treatment using pegylated interferon and ribavirin is effective in only 50% of the patients infected with HCV genotype 1, and is associated with significant side effects. Therefore, it is still of importance to develop new drugs for treatment of HCV. Antiviral substances obtained from natural products, including medicinal plants, are potentially good targets to study. In this study, we evaluated Indonesian medicinal plants for their anti-HCV activities. Ethanol extracts of 21 samples derived from 17 species of medicinal plants explored in the East Java region were tested. Anti-HCV activities were determined by a cell culture method using Huh7.5 cells and HCV strains of 9 different genotypes (1a to 7a, 1b and 2b). Four of the 21 samples tested showed antiviral activities against HCV: Toona sureni leaves (TSL) with 50% inhibitory concentrations (IC50) of 13.9 and 2.0 mug/ml against the HCV J6/JFH1-P47 and -P1 strains, respectively, Melicope latifolia leaves (MLL) with IC50 of 3.5 and 2.1 mug/ml, respectively, Melanolepis multiglandulosa stem (MMS) with IC50 of 17.1 and 6.2 mug/ml, respectively, and Ficus fistulosa leaves (FFL) with IC50 of 15.0 and 5.7 mug/ml, respectively. Time-of-addition experiments revealed that TSL and MLL inhibited both at the entry and post-entry steps while MMS and FFL principally at the entry step. TSL and MLL inhibited all of 11 HCV strains of all the genotypes tested to the same extent. On the other hand, FFL showed significantly weaker inhibitory activities against the HCV genotype 1a strain, and MMS against the HCV strains of genotypes 2b and 7a to a lesser extent, compared to the other HCV genotypes. Ethanol extracts of TSL, MLL, MMS and FFL showed antiviral activities against all the HCV genotypes tested with the exception that some genotype(s) showed significant resistance to FFL and to MMS to a lesser extent. These plant extracts may be good candidates for the development of anti-HCV drugs.
    Full-text · Article · Aug 2013 · Virology Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Hepatitis C virus (HCV) is a major cause of liver disease and a potential cause of substantial morbidity and mortality worldwide. The overall prevalence of HCV infection is 2%, representing 120 million people worldwide. Current standard treatment using pegylated interferon and ribavirin is effective in only 50% of the patients infected with HCV genotype 1, and is associated with significant side effects. Therefore, it is still of importance to develop new drugs for treatment of HCV. Antiviral substances obtained from natural products, including medicinal plants, are potentially good targets to study. In this study, we evaluated Indonesian medicinal plants for their anti-HCV activities. Methods: Ethanol extracts of 21 samples derived from 17 species of medicinal plants explored in the East Java region were tested. Anti-HCV activities were determined by a cell culture method using Huh7.5 cells and HCV strains of 9 different genotypes (1a to 7a, 1b and 2b). Results: Four of the 21 samples tested showed antiviral activities against HCV: Toona sureni leaves (TSL) with 50% inhibitory concentrations (IC 50) of 13.9 and 2.0 μg/ml against the HCV J6/JFH1-P47 and -P1 strains, respectively, Melicope latifolia leaves (MLL) with IC 50 of 3.5 and 2.1 μg/ml, respectively, Melanolepis multiglandulosa stem (MMS) with IC 50 of 17.1 and 6.2 μg/ml, respectively, and Ficus fistulosa leaves (FFL) with IC 50 of 15.0 and 5.7 μg/ml, respectively. Time-of-addition experiments revealed that TSL and MLL inhibited both at the entry and post-entry steps while MMS and FFL principally at the entry step. TSL and MLL inhibited all of 11 HCV strains of all the genotypes tested to the same extent. On the other hand, FFL showed significantly weaker inhibitory activities against the HCV genotype 1a strain, and MMS against the HCV strains of genotypes 2b and 7a to a lesser extent, compared to the other HCV genotypes. Conclusions: Ethanol extracts of TSL, MLL, MMS and FFL showed antiviral activities against all the HCV genotypes tested with the exception that some genotype(s) showed significant resistance to FFL and to MMS to a lesser extent. These plant extracts may be good candidates for the development of anti-HCV drugs.
    Full-text · Article · Aug 2013
  • Source

    Preview · Article · Mar 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular basis of antibody neutralization against hepatitis C virus (HCV) is poorly understood. The E2 glycoprotein of HCV is critically involved in viral infectivity through specific binding to the principal virus receptor component CD81, and is targeted by anti-HCV neutralizing antibodies. A previous study showed that a mutation at position 534 (N534H) within the sixth N-glycosylation motif of E2 of the J6/JFH1 strain of HCV genotype 2a (HCV-2a) was responsible for more efficient access of E2 to CD81 so that the mutant virus could infect the target cells more efficiently. The purpose of this study was to analyze the sensitivity of the parental J6/JFH1, its cell culture-adapted variant P-47 possessing 10 amino acid mutations and recombinant viruses with the adaptive mutations to neutralization by anti-HCV antibodies in sera of HCV-infected patients. The J6/JFH1 virus was neutralized by antibodies in sera of patients infected with HCV-2a and -1b, with mean 50% neutralization titers being 1:670 and 1:200, respectively (P < 0.00001). On the other hand, the P-47 variant showed 50- to 200-times higher sensitivity to antibody neutralization than the parental J6/JFH1 without genotype specificity. The N534H mutation, and another one at position 416 (T416A) near the first N-glycosylation motif to a lesser extent, were shown to be responsible for the enhanced sensitivity to antibody neutralization. The present results suggest that the residues 534, and 416 to a lesser extent, of the E2 glycoprotein are critically involved in the HCV infectivity and antibody neutralization.
    No preview · Article · Feb 2012 · Journal of Medical Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lack of a culture system that efficiently produces progeny virus has hampered hepatitis C virus (HCV) research. Recently, the discovery of a novel HCV isolate JFH1 and its chimeric derivative J6/JFH1 has led to the development of an efficient virus productive culture system. To construct an easy monitoring system for the viral life cycle of HCV, we generated bicistronic luciferase reporter virus genomes based on the JFH1 and J6/JFH1 isolates, respectively. Transfection of the J6/JFH1-based reporter genome to Huh7.5 cells produced significantly greater levels of progeny virus than transfection of the JFH1 genome. Furthermore, the expression of dominant-negative Vps4, a key molecule of the endosomal sorting complex required for transport machinery, inhibited the virus production of JFH1, but not that of J6/JFH1. These results may account for the different abilities to produce progeny virus between JFH1 and J6/JFH1. Using the J6/JFH1/Luc system, we showed that the two polyanions heparin and polyvinyl sulfate decreased the infectivity of J6/JFH1/Luc virus in a dose-dependent manner. We also analyzed the function of microRNA on HCV replication and found that miR-34b could affect the replication of HCV. The reporter virus generated in this study will be useful for investigating the nature of the HCV life cycle and for identification of HCV inhibitors.
    No preview · Article · Aug 2011 · Microbes and Infection
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue viruses infect cells by attaching to a surface receptor which remains unknown. The putative receptor molecules of dengue virus type 2 on the surface of mosquito (AP-61) and mammalian (LLC-MK2) cell lines were investigated. The immunochemical detection and structural analysis of carbohydrates demonstrated that the neutral glycosphingolipids, L-3 (GlcNAcβ1-3Manβ1-4Glcβ1-1'Cer) in AP-61 cells, and nLc(4) Cer (Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1'Cer) in LLC-MK2 cells were recognized by the virus. These findings strongly suggest that neutral glycosphingolipids share the key determinant for virus binding and that the β-GlcNAc residue may play an important role in dengue virus binding to the host cell surface.
    Full-text · Article · Feb 2011 · Microbiology and Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Replication of infectious hepatitis C virus in Huh7 cells, a human hepatocyte cell line, has become possible due to the unique properties of the JFH1 isolate. Developing reporter virus systems for a simple titration has been attempted by integrating heterologous reporter genes into the JFH1 genome, resulting in a big infectivity reduction that limits the usefulness of such reporter systems. To overcome this problem, JFH1-infected Huh7 cells were cultured continuously for 2 years to obtain Huh7-adapted JFH1 variants capable of yielding up to 1000-fold higher titers. Sequence analysis of variant genome RNA suggested that this adapted population consisted mainly of two variants. By joining the 5'-half of the obtained representative viral complementary DNA (cDNA) fragments of the variants with the 3'-half of the wild-type's, two prototype clones, A/WT and B/WT, were constructed. Replication of A/WT and B/WT viruses in Huh7 cells showed up to 100-1000-fold higher titers than the wild-type. A Renilla luciferase cDNA was inserted into the Nonstructural Protein 5A region of the A/WT and B/WT cDNA to generate A/WT-Rluc and B/WT-Rluc, respectively. Transfection of Huh7 cells with in vitro-transcribed A/WT-Rluc and B/WT-Rluc RNA resulted in production of infectious viruses with approximately 15- and 25-fold higher titers, respectively, than the wild-type RNA. The replication of A/WT-Rluc and B/WT-Rluc viruses was more vigorous than the wild-type even with insertion of the luciferase cDNA showing a good correlation of luciferase activities with infectious titers. Furthermore, interferon-alpha inhibited the replication of A/WT-Rluc and B/WT-Rluc viruses in a dose-dependent manner as determined by a luciferase assay. These results imply that our system is potentially a tool useful for screening anti-hepatitis C virus drugs in a simple and time/cost-saving manner.
    No preview · Article · Nov 2010 · Journal of virological methods

  • No preview · Article · Apr 2010 · Journal of Hepatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis C virus (HCV) production system consists of transfecting the human hepatoma cell line Huh7 with genomic HCV RNA (JFH1). To monitor HCV replication by fluorescence microscopy, we constructed a recombinant HCV clone expressing Azami-Green (mAG), a bright green fluorescent protein, by inserting the mAG gene into the nonstructural protein 5A (NS5A) gene; the resultant clone was designated JFH1-hmAG. The Huh-7.5.1 (a subclone of Huh7) cells transfected with JFH1-hmAG RNA were found to produce cytoplasmic NS5A-mAG, as readily visualized by fluorescence microscopy, and infectious virus, as assayed with the culture supernatant, indicating that JFH1-hmAG is infectious and replication-competent. Furthermore, the replication of this virus was inhibited by interferon alpha in a dose-dependent manner. These results suggest that JFH1-hmAG is useful for studying HCV life cycle and the mechanism of interferon's anti-HCV action and for screening and testing new anti-HCV drugs.
    Full-text · Article · Oct 2008 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between cell surface receptors and the envelope glycoprotein (EGP) on the viral membrane surface is the initial step of Dengue virus infection. To understand the host range, tissue tropism, and virulence of this pathogen, it is critical to elucidate the molecular mechanisms of the interaction of EGP with receptor molecules. Here, using a TLC/virus-binding assay, we isolated and characterized a carbohydrate molecule on mammalian cell surfaces that is recognized by dengue virus type 2 (DEN2). Structural determination by immunochemical methods showed that the carbohydrate structure of the purified glycosphingolipid was neolactotetraosylceramide (nLc4Cer). This glycosphingolipid was expressed on the cell surface of susceptible cells, such as human erythroleukemia K562 and baby hamster kidney BHK-21. All serotypes of DEN viruses, DEN1 to DEN4, reacted with nLc4Cer, and the non-reducing terminal disaccharide residue Galbeta1-4GlcNAcbeta1- was found to be a critical determinant for the binding of DEN2. Chemically synthesized derivatives carrying multiple carbohydrate residues of nLc4, but not nLc4 oligosaccharide, inhibited DEN2 infection of BHK-21 cells. These findings strongly suggested that multivalent nLc4 oligosaccharide could act as a competitive inhibitor against the binding of DEN2 to the host cells.
    No preview · Article · Apr 2006 · Journal of Biochemistry

Publication Stats

95 Citations
38.46 Total Impact Points

Institutions

  • 2014
    • University of Indonesia
      • Faculty of Medicine
      Depok, West Java, Indonesia
  • 2011-2014
    • Kobe University
      • Division of Microbiology
      Kōbe, Hyōgo, Japan
  • 2012
    • Japan Science and Technology Agency (JST)
      Edo, Tokyo, Japan
  • 2006-2011
    • University of Shizuoka
      • Department of Biochemistry
      Sizuoka, Shizuoka, Japan
  • 2008-2010
    • The University of Tokyo
      • Institute of Medical Science
      Tōkyō, Japan