K. A. Walker

University of Toronto, Toronto, Ontario, Canada

Are you K. A. Walker?

Claim your profile

Publications (348)790.74 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3 for PEARL-FTS, while ACE-FTS has considerably more information (roughly 1° of freedom per altitude level). We take partial columns between roughly 5 and 30 km for the ACE-FTS–PEARL-FTS comparison, and between 5 and 10 km for the other pairs. The DOFS for the partial columns are between 1.2 and 2 for PEARL-FTS collocated with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS collocated with TANSO-FTS or for TANSO-FTS collocated with either other instrument, while ACE-FTS has much higher information content. For all pairs, the partial column differences are within ± 3 × 1022 molecules cm−2. Expressed as median ± median absolute deviation (expressed in absolute or relative terms), these differences are 0.11 ± 9.60 × 1020 molecules cm−2 (0.012 ± 1.018 %) for TANSO-FTS–PEARL-FTS, −2.6 ± 2.6 × 1021 molecules cm−2 (−1.6 ± 1.6 %) for ACE-FTS–PEARL-FTS, and 7.4 ± 6.0 × 1020 molecules cm−2 (0.78 ± 0.64 %) for TANSO-FTS–ACE-FTS. The differences for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS partial columns decrease significantly as a function of PEARL partial columns, whereas the range of partial column values for TANSO-FTS–ACE-FTS collocations is too small to draw any conclusion on its dependence on ACE-FTS partial columns.
    No preview · Article · Dec 2015
  • Source

    Full-text · Conference Paper · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improved versions of CH4 and N2O profiles derived at the Institute of Meteorology and Climate Research and Instituto de Astrofísica de Andalucía (CSIC) from spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have become available. For the MIPAS full resolution period (2002–2004) these are V5H_CH4_21 and V5H_N2O_21 and for the reduced resolution period (2005–2012) these are V5R_CH4_224, V5R_CH4_225, V5R_N2O_224 and V5R_N2O_225. Here, we compare CH4 profiles to those measured by the Fourier Transform Spectrometer on board of the Atmospheric Chemistry Experiment (ACE-FTS), the HALogen Occultation Experiment (HALOE) and the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) and to the Global Cooperative Air Sampling Network (GCASN) surface data. We find the MIPAS CH4 profiles below 25 km to be typically higher in the order of 0.1 ppmv for both measurement periods. N2O profiles are compared to those measured by ACE-FTS, the Microwave Limb Sounder on board of the Aura satellite (Aura-MLS) and the Sub-millimetre Radiometer on board of the Odin satellite (Odin-SMR) as well as to the Halocarbons and other Atmospheric Trace Species Group (HATS) surface data. The mixing ratios from the satellite instruments agree well for the full resolution period. For the reduced resolution period, MIPAS produces similar values as Odin-SMR, but higher values than ACE-FTS and HATS. Below 27 km, the MIPAS profiles show higher mixing ratios than Aura-MLS, and lower values between 27 and 41 km. Cross comparisons between the two MIPAS measurement periods show that they generally agree quite well, but, especially for CH4, the reduced resolution period seems to produce slightly higher mixing ratios than the full resolution data.
    No preview · Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The region is characterized by strong gradients in the distribution of long-lived tracers, whose representation in models is sensitive to discrepancies in transport. We evaluate the GEOS-Chem model in the UTLS using carbon dioxide (CO2) and ozone (O3) observations from the HIAPER (The High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaign in March 2010. GEOS-Chem CO2/O3 correlation suggests that there is a discrepancy in mixing across the tropopause in the model, which results in an overestimate of CO2 and an underestimate of O3 in the Arctic lower stratosphere. We assimilate stratospheric O3 data from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and use the assimilated O3 fields together with the HIPPO CO2/O3 correlations to obtain an adjustment to the modeled CO2 profile in the Arctic UTLS (primarily between the 320 and 360 K isentropic surfaces). The HIPPO-derived adjustment corresponds to a sink of 0.60 Pg C for March–August 2010 in the Arctic. Imposing this adjustment results in a reduction in the CO2 sinks inferred from GOSAT observations for temperate North America, Europe, and tropical Asia of 19, 13, and 49 %, respectively. Conversely, the inversion increased the source of CO2 from tropical South America by 23 %. We find that the model also underestimates CO2 in the upper tropical and subtropical troposphere. Correcting for the underestimate in the model relative to HIPPO in the tropical upper troposphere leads to a reduction in the source from tropical South America by 77 %, and produces an estimated sink for tropical Asia that is only 19 % larger than the standard inversion (without the imposed source and sink). Globally, the inversion with the Arctic and tropical adjustment produces a sink of −6.64 Pg C, which is consistent with the estimate of −6.65 Pg C in the standard inversion. However, the standard inversion produces a stronger northern land sink by 0.98 Pg C to account for the CO2 overestimate in the high-latitude UTLS, suggesting that this UTLS discrepancy can impact the latitudinal distribution of the inferred sources and sinks. We find that doubling the model resolution from 4° × 5° to 2° × 2.5° enhances the CO2 vertical gradient in the high-latitude UTLS, and reduces the overestimate in CO2 in the extratropical lower stratosphere. Our results illustrate that discrepancies in the CO2 distribution in the UTLS can affect CO2 flux inversions and suggest the need for more careful evaluation of model errors in the UTLS.
    Full-text · Article · Oct 2015 · ATMOSPHERIC CHEMISTRY AND PHYSICS
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare the nitric oxide measurements in the mesosphere and lower thermosphere (60 to 150 km) from four instruments: the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), and the Sub-Millimetre Radiometer (SMR). We use the daily zonal mean data in that altitude range for the years 2004-2010 (ACE-FTS), 2005-2012 (MIPAS), 2008-2012 (SCIAMACHY), and 2003-2012 (SMR). We first compare the data qualitatively with respect to the morphology, focussing on the major features, and then compare the time series directly and quantitatively. In three geographical regions, we compare the vertical density profiles on coincident measurement days. Since none of the instruments delivers continuous daily measurements in this altitude region, we carried out a multi-linear regression analysis. This regression analysis considers annual and semi-annual variability in the form of harmonic terms and inter-annual variability by responding linearly to the solar Lyman-α radiation index and the geomagnetic Kp index. This analysis helps to find similarities and differences in the individual data sets with respect to the inter-annual variations caused by geomagnetic and solar variability. We find that the data sets are consistent and that they only disagree on minor aspects. SMR and ACE-FTS deliver the longest time series in the mesosphere, and they agree with each other remarkably well. The shorter time series from MIPAS and SCIAMACHY also agree with them where they overlap. The data agree within 30 % when the number densities are large, but they can differ by 50 to 100 % in some cases.
    Full-text · Article · Oct 2015 · Atmospheric Measurement Techniques
  • [Show abstract] [Hide abstract]
    ABSTRACT: A quality assessment of the CFC-11 (CCl3F), CFC-12 (CCl2F2), HF, and SF6 products from limb-viewing satellite instruments is provided by means of a detailed inter-comparison. The climatologies in the form of monthly zonal mean time series are obtained from HALOE, MIPAS, ACE-FTS, and HIRDLS within the time period 1991–2010. The inter-comparisons focus on the mean biases of the monthly and annual zonal mean fields and aim to identify their vertical, latitudinal and temporal structure. The CFC evaluations (based on MIPAS, ACE-FTS and HIRDLS) reveal that the uncertainty in our knowledge of the atmospheric CFC-11 and CFC-12 mean state, as given by satellite data sets, is smallest in the tropics and mid-latitudes at altitudes below 50 and 20 hPa, respectively, with a 1-sigma multi-instrument spread of up to ±5 %. For HF, the situation is reversed. The two available data sets (HALOE and ACE-FTS) agree well above 100 hPa with a spread in this region of ±5 to ±10 %, while at altitudes below 100 hPa the HF annual mean state is less well known with a spread ±30 % and larger. The atmospheric SF6 annual mean states derived from two satellite data sets (MIPAS and ACE-FTS) show only very small differences with a spread of less than ±5 % and often below ±2.5 %. While the overall agreement among the climatological data sets is very good for large parts of the upper troposphere and lower stratosphere (CFCs, SF6) or middle stratosphere (HF), individual discrepancies have been identified. Pronounced deviations between the instrument climatologies exist for particular atmospheric regions which differ from gas to gas. Notable features are differently shaped isopleths in the subtropics, deviations in the vertical gradients in the lower stratosphere and in the meridional gradients in the upper troposphere, and inconsistencies in the seasonal cycle. Additionally, long-term drifts between the instruments have been identified for the CFC-11 and CFC-12 time series. The evaluations as a whole provide guidance on what data sets are the most reliable for applications such as studies of atmospheric transport and variability, model-measurement comparisons and detection of long-term trends. The data sets will be publicly available from the SPARC Data center and through PANGAEA (doi:10.1594/PANGAEA.849223).
    No preview · Article · Sep 2015
  • Niall J. Ryan · Kaley A. Walker
    [Show abstract] [Hide abstract]
    ABSTRACT: A sensitivity study was performed to assess the impact that uncertainties in the spectroscopic parameters of atmospheric species have on the retrieval of gas concentrations using the 265–280 GHz region of the electromagnetic spectrum. Errors in the retrieval of O3, N2O, HNO3, and ClO from spectra measured by ground-based radiometers were investigated. The goal of the study was to identify the spectroscopic parameters of these target species, and other interfering species, available in the JPL and HITRAN 2008 catalogues, which contribute the largest error to retrieved atmospheric concentration profiles in order to provide recommendations for new laboratory measurements. The parameters investigated were the line position, line strength, broadening coefficients and their temperature dependence, and pressure shift. Uncertainties in the air broadening coefficients of gases tend to contribute the largest error to retrieved atmospheric concentration profiles. For O3 and N2O, gases with relatively strong spectral signatures, the retrieval is sensitive to uncertainties in the parameters of the main spectral line that is observed. For HNO3, the uncertainties in many closely spaced HNO3 lines can cause large errors in the retrieved profile, and for ClO, the error in the profile is dominated by uncertainties in nearby, stronger O3 lines. Fourteen spectroscopic parameters are identified, for which updated measurements would have the most impact on the accuracy of ground-based remote sensing of the target species at 265–280 GHz.
    No preview · Article · Aug 2015 · Journal of Quantitative Spectroscopy and Radiative Transfer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10 to 25 km height from the near infrared spectral range (1353–1410 nm). These data cover the Upper Troposphere and Lower Stratosphere (UTLS), a region in the atmosphere, which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data is reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14 to 20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a good temporal stability is shown. In the tropical stratosphere an increase in water vapour is found between 2002 and 2012, which is in agreement with other satellite data sets for overlapping time periods.
    Preview · Article · Jul 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) abord the European satellite Envisat have been retrieved from versions MIPAS/4.61–MIPAS/4.62 and MIPAS/5.02–MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). These profiles have been compared to measurements taken by the balloon borne Cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS stratospheric aircraft (MIPAS-STR), the satellite borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS) as well as the ground based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005–April 2012) of MIPAS Envisat. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (FR: July 2002–March 2004) and were used to validate MIPAS Envisat CFC-11 and CFC-12 products during that time, as well as ILAS-II profiles. In general, we find that MIPAS Envisat shows slightly higher values for CFC-11 at the lower end of the profiles (below ~ 15 km) and in a comparison of HATS ground-based data and MIPAS Envisat measurements at 3 km below the tropopause. Differences range from approximately 10–50 pptv (~ 5–20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high-bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11, so that differences at the lower end of the profile (below ~ 15 km) and in the comparison of HATS and MIPAS Envisat measurements taken at 3 km below the tropopause mainly stay within 10–50 pptv (~ 2–10 %) for the RR and the FR period. Above approximately 15 km, most comparisons are close to excellent, apart from ILAS-II, which shows large differences above ~ 17 km. Overall, percentage differences are usually smaller for CFC-12 than for CFC-11. For both species – CFC-11 and CFC-12 – we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS Envisat profiles have a maximum in the mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Estimated measurement noise alone can, in most cases, not explain the standard deviation of the differences. This is attributed to error components not considered in the error estimate and also to natural variability which always plays a role when the compared instruments do not measure exactly the same air mass. Investigations concerning the temporal stability show very small negative drifts in MIPAS Envisat CFC-11 measurements. These drifts vary between ~ 1–3 % decade−1. For CFC-12, the drifts are also negative and close to zero up to ~ 30 km. Above that altitude larger drifts of up to ~ 50 % decade−1 appear which are negative up to ~ 35 km and positive, but of a similar magnitude, above.
    No preview · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we make a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we consider the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a harmonized and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allows us to investigate, from the ground up to the stratopause, the following main aspects of data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permits us to quantify the overall consistency between the ozone profilers. Generally, we find that between 20–40 km, the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are better than 5–12 % and the drifts are at most ±5 % decade−1 (and ±3 % decade−1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause, where natural variability and low ozone abundancies impede a more precise analysis. A few records deviate from the preceding general remarks, in part of the stratosphere; we identify biases of 10 % and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflect on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
    Full-text · Article · Jul 2015
  • Source

    Full-text · Conference Paper · Jun 2015

  • No preview · Article · Jun 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infra-red (IR) limb emission spectrometer on the Envisat platform. It measured during day and night, pole-to-pole, over an altitude range from 6 to 70 km in nominal mode and up to 170 km in special modes, depending on the measurement mode, producing more than 1000 profiles day−1. We present the results of a validation study of methane version V5R_CH4_222 retrieved with the IMK/IAA MIPAS scientific level 2 processor. The level 1 spectra are provided by ESA, the version 5 was used. The time period covered corresponds to the period when MIPAS measured at reduced spectral resolution, i.e. 2005–2012. The comparison with satellite instruments includes the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the HALogen Occultation Experiment (HALOE), the Solar Occultation For Ice Experiment (SOFIE) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Furthermore, comparisons with MkIV balloon-borne solar occultation measurements and with air sampling measurements performed by the University of Frankfurt are presented. The validation activities include bias determination, in selected cases, assessment of histograms and comparison of corresponding climatologies. Above 50 km altitude, MIPAS methane mixing ratios agree within 3% with ACE-FTS and SOFIE. Between 30 and 40 km an agreement within 3% with SCIAMACHY has been found. In the middle stratosphere, there is no clear indication of a MIPAS bias since comparisons with various instruments contradict each other. In the lower stratosphere (below about 25–30 km) MIPAS CH4 is biased high with respect to satellite instruments, and the most likely estimate of this bias is 14%. However, in the comparison with CH4 data obtained from cryosampler measurements, there is no evidence of a MIPAS high bias between 20 and 25 km altitude. Precision validation is performed on collocated MIPAS-MIPAS pairs and suggests a slight underestimation of its errors by a factor of 1.2. A parametric model consisting of constant, linear, QBO and several sine and cosine terms with different periods has been fitted to the temporal variation of differences of stratospheric CH4 measurements by MIPAS and ACE-FTS for all 10° latitude/1–2 km altitude bins. Only few significant drifts can be calculated, due to the lack of data. Significant drifts with respect to ACE-FTS tend to have higher absolute values in the Northern Hemisphere, have no pronounced tendency in the sign, and do not exceed 0.2 ppmv per decade in absolute value.
    No preview · Article · Jun 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The MIPAS spectrometer onboard the Envisat platform observed infrared emission from the Earth's limb between 2002 and 2012. It recorded high-resolution spectra during day and night, from pole to pole and between 6 and 70 km altitude in the nominal measurement mode or up to 170 km in special measurement modes, producing daily more than 1000 vertical profiles of various trace gases. The operational Level-2 data are processed by ESA/DLR but there exist three other, independent research Level-2 processors that are hosted by ISAC-CNR/University of Bologna, Oxford University, and KIT IMK/IAA. All four Level-2 processors rely on the same Level-1b data provided by ESA but their retrieval schemes differ. As part of ESA's Ozone Climate Change Initiative project, an intercomparison of the four MIPAS processors took place, in which vertical ozone profiles retrieved by these four processors from MIPAS nominal mode measurements were compared for 2007 and 2008. We present the results of this comparison exercise, which consisted of five parts: an information content study of the vertical averaging kernels, an intercomparison of zonal seasonal means and spreads, a determination of biases through comparison to ozonesonde and lidar measurements, a comparison to other satellite records (bias estimation and precision assessment with respect to ACE-FTS and Aura-MLS data), and a geophysical validation of the provided error bars using MIPAS–MIPAS collocations.
    No preview · Article · Jun 2015 · Remote Sensing of Environment
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in reduced spectral resolution nominal mode in the period from January 2005 to April 2012 from version 5.02 level-1b spectral data and covering an altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of measured limb spectral radiances to modelled spectra. The spectral ν4-band at 816.5 ± 13 cm−1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The linear growth rate in the lower latitudes lower stratosphere was about 6 to 7 pptv yr−1 in the period 2005–2012. The obtained profiles were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and in situ cryosampler balloon measurements. Between 13 and 22 km, average agreement within −3 to +5 pptv (MIPAS–ACE) with ACE-FTS v3.5 profiles is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15–50 pptv below 24 km and less than 10 pptv above 28 km. Obtained MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data, probably due to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10° latitude/1 to 2 km altitude bins. The relative linear variation was always positive, with relative increases of 40–70% decade−1 in the tropics and global lower stratosphere, and up to 120% decade−1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. In the middle stratosphere between 20 and 30 km, the observed trend is not consistent with the age of stratospheric air-corrected trend at ground, but stronger positive at the Southern Hemisphere and less strong increasing in the Northern Hemisphere, hinting towards changes in the stratospheric circulation over the observation period.
    No preview · Article · May 2015 · Atmospheric Chemistry and Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised datasets. The amount of ozone-depleting compounds in the stratosphere (as measured by Equivalent Effective Stratospheric Chlorine – EESC) maximised in the second half of the 1990s. We therefore examine the trends in the periods before and after that peak to see if any change in trend is discernible in the ozone record. Prior to 1998, trends in the upper stratosphere (∼45km, 4hPa) are found to be −5 to −10 % per decade at mid-latitudes and closer to −5 % per decade in the tropics. No trends are found in the mid-stratosphere (28 km, 30 hPa). Negative trends are seen in the lower stratosphere at mid-latitudes in both hemispheres and in the deep tropics. However it is hard to be categorical about the trends in the lower stratosphere for three reasons: (i) there are fewer measurements, (ii) the data quality is poorer, and (iii) the measurements in the 1990s are perturbed by aerosols from the Mt. Pinatubo eruption in 1991. These findings are similar to those reported previously even though the measurements for the two main satellite instruments (SBUV and SAGE II) and the ground-based Umkehr and ozonesonde stations have been revised. There is no sign of a continued negative trend in the upper stratosphere since 1998: instead there is a hint of an average positive trend of ∼ 2 % per decade in mid-latitudes and ∼3 % per decade in the tropics. The significance of these upward trends is investigated using different assumptions of the independence of the trend estimates found from different datasets. The averaged upward trends are significant if the trends derived from various datasets are assumed to be independent, but are generally not significant if the trends are not independent. This arises because many of the underlying mea- surement records are used in more than one merged dataset. At this point it is not possible to say which assumption is best. Including an estimate of the drift of the over- all ozone observing system decreases the significance of the trends. The significance will become clearer as (i) more years are added to the observational record, (ii) further improvements are made to the historic ozone record (e.g. through algorithm development), and (iii) the data merging techniques are refined, particularly through a more rigorous treatment of uncertainties.
    Full-text · Article · May 2015 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: CMAM30 is a 30 year data set extending from 1979 to 2010 that is generated using a version of the Canadian Middle Atmosphere Model (CMAM) in which the winds and temperatures are relaxed to the Interim Reanalysis product from the European Centre Medium-Range for Weather Forecasts (ERA-Interim). The data set has dynamical fields that are very close to the reanalysis below 1 hPa and chemical tracers that are self-consistent with respect to the model winds and temperature. The chemical tracers are expected to be close to actual observations. The data set is here compared to two satellite records – the Atmospheric Chemistry Experiment Fourier Transform Spectometer and the Odin Optical Spectrograph and InfraRed Imaging System – for the purpose of validating the temperature, ozone, water vapour and methane fields. Data from the Aura Microwave Limb Sounder is also used for validation of the chemical processing in the polar vortex. It is found that the CMAM30 temperature is warm by up to 5 K in the stratosphere, with a low bias in the mesosphere of ~ 5–15 K. Ozone is reasonable (± 15%) except near the tropopause globally, and in the Southern Hemisphere winter polar vortex. Water vapour is consistently low by 10–20%, with corresponding high methane of 10–20%, except in the Southern Hemisphere polar vortex. Discrepancies in this region are shown to stem from the treatment of polar stratospheric cloud formation in the model.
    No preview · Article · Apr 2015 · Atmospheric Chemistry and Physics
  • Source

    Full-text · Article · Apr 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: As part of ESA's climate change initiative high vertical resolution ozone profiles from three instruments all aboard ESA's Envisat (GOMOS, MIPAS, SCIAMACHY) in combination with ESA's third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the datasets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measuerements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. Main results of this paper indicate that the 6 instruments perform well in the stratosphere particularly between 20 and 40 km with a mean relative difference of ±5% (middle latitudes) to ±10% (tropics). Larger differences and variability in the differences are found in the upper troposphere lower stratosphere region and in the mesosphere. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments.
    No preview · Article · Apr 2015

  • No preview · Article · Mar 2015 · Atmospheric Chemistry and Physics

Publication Stats

5k Citations
790.74 Total Impact Points

Institutions

  • 2005-2015
    • University of Toronto
      • Department of Physics
      Toronto, Ontario, Canada
  • 1058-2009
    • University of Waterloo
      • Department of Chemistry
      Waterloo, Ontario, Canada
  • 1997-1999
    • University of British Columbia - Vancouver
      • Department of Chemistry
      Vancouver, British Columbia, Canada