Vernon K Ward

University of Otago, Taieri, Otago, New Zealand

Are you Vernon K Ward?

Claim your profile

Publications (80)248.1 Total impact

  • Source

    Full-text · Dataset · Jan 2016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activated antigen presenting cells (APC) deliver the three signals cytotoxic T cells require to differentiate into effector cells that destroy the tumour. These comprise antigen, co-stimulatory signals and cytokines. Once these cells have carried out their function they apoptose. We hypothesized that the tumor suppressor protein, p53, played an important role in generating the anti-tumor response facilitated by APC. CD11c+ APC derived from p53 wild type mouse (wt p53) GM-CSF bone marrow cultures (BMAPC) and activated had reduced survival compared to BMAPC from p53 null consistent with p53-mediated apoptosis following activation. There was a lower percentage of antigenic peptide/MHC I complexes on antigen-pulsed p53 null cells suggesting p53 played a role in antigen processing but there was no difference in antigen-specific T cell proliferative responses to these cells in vivo. In contrast antigen-specific cytotoxicity in vivo was markedly reduced in response to p53 null BMAPC. When these cells were pulsed with a model tumour antigen and delivered as a prophylactic vaccination they provided no protection against melanoma cell growth whereas wt BMAPC were very effective. This suggested that p53 might regulate the requisite third signal and, indeed, we found that p53 null BMAPC produced less IL-12 than wt p53 BMAPC and that p53 bound to the promoter region of IL-12. This work suggests that p53 in activated BMAPC is associated with the generation of IL-12 required for the differentiation of cytotoxic immune responses and an effective anti-tumor response. This is a completely new role for this protein that has implications for BMAPC-mediated immunotherapy.
    No preview · Article · Dec 2015 · OncoImmunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many viruses replicate most efficiently in specific phases of the cell cycle, establishing or exploiting favorable conditions for viral replication, although little is known about the relationship between caliciviruses and the cell cycle. Microarray and Western blot analysis of murine norovirus 1 (MNV-1)-infected cells showed changes in cyclin transcript and protein levels indicative of a G1 phase arrest. Cell cycle analysis confirmed that MNV-1 infection caused a prolonging of the G1 phase and an accumulation of cells in the G0/G1 phase. The accumulation in G0/G1 phase was caused by a reduction in cell cycle progression through the G1/S restriction point, with MNV-1-infected cells released from a G1 arrest showing reduced cell cycle progression compared to mockinfected cells. MNV-1 replication was compared in populations of cells synchronized into specific cell cycle phases and in asynchronously growing cells. Cells actively progressing through the G1 phase had a 2-fold or higher increase in virus progeny and capsid protein expression over cells in other phases of the cell cycle or in unsynchronized populations. These findings suggest that MNV-1 infection leads to prolonging of the G1 phase and a reduction in S phase entry in host cells, establishing favorable conditions for viral protein production and viral replication. There is limited information on the interactions between noroviruses and the cell cycle, and this observation of increased replication in the G1 phase may be representative of other members of the Caliciviridae.
    No preview · Article · Mar 2015 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The great benefits that chemical pesticides have brought to agriculture are partly offset by widespread environmental damage to nontarget species and threats to human health. Microbial bioinsecticides are considered safe and highly specific alternatives but generally lack potency. Spindles produced by insect poxviruses are crystals of the fusolin protein that considerably boost not only the virulence of these viruses but also, in cofeeding experiments, the insecticidal activity of unrelated pathogens. However, the mechanisms by which spindles assemble into ultra-stable crystals and enhance virulence are unknown. Here we describe the structure of viral spindles determined by X-ray microcrystallography from in vivo crystals purified from infected insects. We found that a C-terminal molecular arm of fusolin mediates the assembly of a globular domain, which has the hallmarks of lytic polysaccharide monooxygenases of chitinovorous bacteria. Explaining their unique stability, a 3D network of disulfide bonds between fusolin dimers covalently crosslinks the entire crystalline matrix of spindles. However, upon ingestion by a new host, removal of the molecular arm abolishes this stabilizing network leading to the dissolution of spindles. The released monooxygenase domain is then free to disrupt the chitin-rich peritrophic matrix that protects insects against oral infections. The mode of action revealed here may guide the design of potent spindles as synergetic additives to bioinsecticides.
    Full-text · Article · Mar 2015 · Proceedings of the National Academy of Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Virus-like particles (VLPs) are an effective means of establishing both prophylactic and therapeutic immunity against their source virus or heterologous antigens. The particulate nature and repetitive structure of VLPs makes them ideal for stimulating potent immune responses. Epitopes delivered by VLPs can be presented on MHC-II for stimulation of a humoral immune response, or cross-presented onto MHC-I leading to cell-mediated immunity. VLPs as particulate subunit vaccine carriers are showing promise in preclinical and clinical trials for the treatment of many conditions including cancer, autoimmunity, allergies and addiction. Supporting the delivery of almost any form of antigenic material, VLPs are ideal candidate vectors for development of future vaccines.
    No preview · Article · Nov 2014 · Therapeutic delivery
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The norovirus NS6 protease is a key target for anti-viral drug development. Noroviruses encode a 2,200 amino acid polyprotein which is cleaved by this critical protease at five defined boundary substrates into six mature non-structural proteins. Studies of the human norovirus NS6 protease, in the context of a full ORF1 polyprotein, have been severely hampered because human noroviruses are not culturable. Thus, investigations into the human norovirus NS6 protease have been largely restricted to in vitro assays using E. coli-expressed, purified enzyme. The NS6 protease is formed of two distinct domains joined by a linking loop. Structural data suggests that domain 2 of the protease possesses substantial substrate binding pockets which form the bulk of the interactions with the non-structural boundaries and largely dictate boundary specificity and cleavage. We have constructed chimeric murine norovirus genomes carrying individual domains from the human norovirus protease and demonstrated by cell transfection that, chimeric human norovirus proteases have functional activity in the context of the full-length ORF1 polyprotein. Whilst domain 2 confers boundary specificity, our data suggests that an inter-domain interaction exists within human norovirus NS6 protease which influences cleavage of specific substrates. This study also shows that chimeric murine noroviruses provide improved models for studying human norovirus protein function in the context of a full ORF1 polyprotein.
    Preview · Article · Oct 2014 · Biochemical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to test the application of the “nanoparticle” concept to viruses in terms of low-frequency dynamics, large viruses (140–190 nm) were compared to similar-sized polymer colloids using ultra-small-angle x-ray scattering and very-low-frequency Raman or Brillouin scattering. While both viruses and polymer colloids show comparable highly defined morphologies, with comparable abilities of forming self-assembled structures, their respective abilities to confine detectable acoustic vibrations, as expected for such monodisperse systems, differed. Possible reasons for these different behaviors are discussed.
    Full-text · Article · Aug 2014 · Physical Review E
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Internalization of peptides by antigen presenting cells is crucial for the initiation of the adaptive immune response. Mannosylation has been demonstrated to enhance antigen uptake through mannose receptors, leading to improved immune responses. In this study we test the effect of surface mannosylation of protein-based virus-like particles (VLP) derived from Rabbit hemorrhagic disease virus (RHDV) on uptake by murine and human antigen presenting cells. A monomannoside and a novel dimannoside were synthesized and successfully conjugated to RHDV VLP capsid protein, providing approximately 270 mannose groups on the surface of each virus particle. VLP conjugated to the mannoside or dimannoside exhibited significantly enhanced binding and internalization by murine dendritic cells, macrophages and B cells as well as human dendritic cells and macrophages. This uptake was inhibited by the inclusion of mannan as a specific inhibitor of mannose specific uptake, demonstrating that mannosylation of VLP targets mannose receptor-based uptake. Consistent with mannose receptor-based uptake, partial retargeting of the intracellular processing of RHDV VLP was observed, confirming that mannosylation of VLP provides both enhanced uptake and modified processing of associated antigens.
    Full-text · Article · Aug 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function, screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human noroviruses.
    Full-text · Article · Mar 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Noroviruses are an emerging threat to public health, causing large health and economic costs, including at least 200,000 deaths annually. The inability to replicate in cell culture or small animal models has limited the understanding of the interaction between human noroviruses and their hosts. However an alternative strategy to gain insights into norovirus pathogenesis is to study murine norovirus (MNV-1) that replicates in cultured macrophages. While the innate immune response is central to the resolution of norovirus disease, the adaptive immune response is required for viral clearance. The specific responses of infected macrophages and dendritic cells to infection drive the adaptive immune response, with chemokines playing an important role. In this study we have conducted microarray analysis of RAW264.7 macrophages infected with MNV-1 and examined the changes in chemokine transcriptional expression during infection. While the majority of chemokines showed no change, there was specific up-regulation in chemokines reflective of a bias towards a Th1 response, specifically CCL2, CCL3, CCL4, CCL5, CXCL2, CXCL10 and CXCL11. These changes in gene expression were reflected in protein levels as determined by ELISA assay. This virus-induced chemokine response will affect the resolution of infection and may limit the humoral response to norovirus infection.
    No preview · Article · Dec 2013 · Virus Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is caused by high-risk, cancer-causing human papillomaviruses (HPV) and is the second highest cause of cancer deaths in women globally. The majority of cervical cancers express well-characterized HPV oncogenes, which are potential targets for immunotherapeutic vaccination. Here we develop a rabbit haemorrhagic disease virus (RHDV) virus-like particle (VLP)-based vaccine designed for immunotherapy against HPV16 positive tumours. An RHDV-VLP, modified to contain the universal helper T cell epitope PADRE and decorated with an MHC I-restricted peptide (aa 48-57) from the HPV16 E6, was tested for its immunotherapeutic efficacy against the TC-1 HPV16 E6 and E7-expressing tumour in mice. The E6-RHDV-VLP-PADRE was administered therapeutically for the treatment of a pre-existing TC-1 tumour and was delivered with antibodies either to deplete regulatory T cells (anti-CD25) or to block T cell suppression mediated through CTLA-4. As a result, the tumour burden was reduced by around 50% and the median survival time of mice to the humane endpoint was almost doubled the compared to controls. The incorporation of PADRE into the RHDV-VLP was necessary for an E6-specific enhancement of the anti-tumour response and the co-administration of the immune modifying antibodies contributed to the overall efficacy of the immunotherapy. The E6-RHDV-VLP-PADRE shows immunotherapeutic efficacy, prolonging survival for HPV tumour-bearing mice. This was enhanced by the systemic administration of immune-modifying antibodies that are commercially available for use in humans. There is potential to further modify these particles for even greater efficacy in the path to development of an immunotherapeutic treatment for HPV precancerous and cancer stages.
    Full-text · Article · Jun 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Virus-like particles (VLP) from rabbit hemorrhagic disease virus (RHDV) can be used as a scaffold to facilitate the delivery of antigens to induce cell-mediated immune responses. In this study, we investigated the immune response to lymphocytic choriomeningitis virus-derived peptide antigen (gp33) delivered by RHDV VLP. The gp33 peptides were incorporated into the VLP in 2 different forms, either recombinantly expressed inside the VLP (VLP-gp33r) or chemically coupled to the surface of the VLP (VLP-gp33c). We showed that VLP-gp33r induced a greater level of cytotoxicity than VLP-gp33c against gp33-coated target cells in vivo. Both VLP, when delivered as prophylactic vaccines, inhibited the growth of Lewis' lung carcinoma tumors expressing gp33 (LL-LCMV) in mice to a similar degree. Studies to investigate the mechanism induced by these VLP showed that 2 CD11c DC subsets, CD8α and CD8α, acquired VLP in vivo and in vitro, and VLP-gp33r were cross-presented by both these subsets to prime CD8 T cells through a TAP-independent, endosomal recycling pathway. Depletion of Langerin DC in vivo before and after vaccination with VLP-gp33r, lead to reduced cytotoxicity implicating these cells in the induction of cytotoxic effector cells. These results suggest that recombinant VLP expressing tumor peptides targeted to Langerin DC may have clinical application. Finally we found that VLP-gp33r were more effective antitumor vaccines than VLP-gp33c when delivered therapeutically. The findings of this study suggest the potential of VLP as a platform for delivery of tumor-associate antigen and elicit protective immunity against tumors.
    No preview · Article · Nov 2012 · Journal of immunotherapy (Hagerstown, Md.: 1997)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virus-like particles (VLP) are effective vehicles for delivery of heterologous antigen to antigen-presenting cells. However VLP alone are insufficiently stimulatory to generate the signals required to facilitate effective priming of naïve T cells. We show that the VLP derived from rabbit hemorrhagic disease virus can bind the galactose-containing adjuvant α-galactosylceramide to form a composite particle for co-delivery of antigen and adjuvant to the same antigen-presenting cell. Vaccination with VLP and α-galactosylceramide activated splenic iNKT cells to produce IFN-γ and IL-4, led to the generation of antigen-specific T cells that protected prophylactically against subcutaneous tumor challenge, and was more effective at generating anti-tumor immune responses than either component individually. These data demonstrate a novel method for immunopotentiating VLP to increase their efficacy in the generation of anti-tumor responses via the innate ligand recognition properties of calicivirus-derived nanoparticles.
    Full-text · Article · Feb 2012 · Journal of Controlled Release
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human noroviruses are highly infectious viruses that cause the majority of acute, non-bacterial epidemic gastroenteritis cases worldwide. The first open reading frame of the norovirus RNA genome encodes for a polyprotein that is cleaved by the viral protease into six non-structural proteins. The first non-structural protein, NS1-2, lacks any significant sequence similarity to other viral or cellular proteins and limited information is available about the function and biophysical characteristics of this protein. Bioinformatic analyses identified an inherently disordered region (residues 1-142) in the highly divergent N-terminal region of the norovirus NS1-2 protein. Expression and purification of the NS1-2 protein of Murine norovirus confirmed these predictions by identifying several features typical of an inherently disordered protein. These were a biased amino acid composition with enrichment in the disorder promoting residues serine and proline, a lack of predicted secondary structure, a hydrophilic nature, an aberrant electrophoretic migration, an increased Stokes radius similar to that predicted for a protein from the pre-molten globule family, a high sensitivity to thermolysin proteolysis and a circular dichroism spectrum typical of an inherently disordered protein. The purification of the NS1-2 protein also identified the presence of an NS1-2 dimer in Escherichia coli and transfected HEK293T cells. Inherent disorder provides significant advantages including structural flexibility and the ability to bind to numerous targets allowing a single protein to have multiple functions. These advantages combined with the potential functional advantages of multimerisation suggest a multi-functional role for the NS1-2 protein.
    Full-text · Article · Feb 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumour cell lysates are an excellent source of many defined and undefined tumour antigens and have been used clinically in immunotherapeutic regimes but with limited success. We conjugated Mel888 melanoma lysates to rabbit haemorrhagic disease virus virus-like particles (VLP), which can act as vehicles to deliver multiple tumour epitopes to dendritic cells (DC) to effectively activate antitumour responses. Virus-like particles did not stimulate the phenotypic maturation of DC although, the conjugation of lysates to VLP (VLP-lysate) did overcome lysate-induced suppression of DC activation. Lysate-conjugated VLP enhanced delivery of antigenic proteins to DC, while the co-delivery of VLP-lysates with OK432 resulted in cross-priming of naïve T cells, with expansion of a MART1(+) population of CD8(+) T cells and generation of a specific cytotoxic response against Mel888 tumour cell targets. The responses generated with VLP-lysate and OK432 were superior to those stimulated by unconjugated lysate with OK432. Collectively, these results show that the combination of VLP-lysate with OK432 delivered to DC overcomes the suppressive effects of lysates, and enables priming of naïve T cells with superior ability to specifically kill their target tumour cells.
    Full-text · Article · Dec 2011 · British Journal of Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iridoviruses (IV) are nuclear cytoplasmic large DNA viruses that are receiving increasing attention as sublethal pathogens of a range of insects. Invertebrate iridovirus type 9 (IIV-9; Wiseana iridovirus) is a member of the major phylogenetic group of iridoviruses for which there is very limited genomic and proteomic information. The genome is 205,791 bp, has a G+C content of 31%, and contains 191 predicted genes, with approximately 20% of its repeat sequences being located predominantly within coding regions. The repeated sequences include 11 proteins with helix-turn-helix motifs and genes encoding related tandem repeat amino acid sequences. Of the 191 proteins encoded by IIV-9, 108 are most closely related to orthologs in IIV-3 (Chloriridovirus genus), and 114 of the 126 IIV-3 genes have orthologs in IIV-9. In contrast, only 97 of 211 IIV-6 genes have orthologs in IIV-9. There is almost no conservation of gene order between IIV-3, IIV-6, and IIV-9. Phylogenetic analysis using a concatenated sequence of 26 core IV genes confirms that IIV-3 is more closely related to IIV-9 than to IIV-6, despite being from a different genus of the Iridoviridae. An interaction between IIV and small RNA regulatory systems is supported by the prediction of seven putative microRNA (miRNA) sequences combined with XRN exonuclease, RNase III, and double-stranded RNA binding activities encoded on the genome. Proteomic analysis of IIV-9 identified 64 proteins in the virus particle and, when combined with infected cell analysis, confirmed the expression of 94 viral proteins. This study provides the first full-genome and consequent proteomic analysis of group II IIV.
    Preview · Article · Jun 2011 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective vaccines and immunotherapies against cancer require professional antigen-presenting cells to cross-present exogenous antigen to initiate cytotoxic T-cell responses to destroy tumors. Virus-like particles (VLPs), containing tumor antigens, which can immunize against cancers, are cross-presented by dendritic cell (DC) but the mechanism by which this occurs is not fully understood. Here, we used VLPs, derived from rabbit hemorrhagic disease virus (RHDV) with both murine and human DCs, to elucidate these pathways. We have employed inhibitors to demonstrate that these VLPs are taken up by clathrin-dependent macropinocytosis and phagocytosis before being degraded in acidic lysosomal compartments. VLP-derived peptides are loaded onto major histocompatibility complex I that have been recycled from the cell surface. Antigen-coupled VLPs and murine ovalbumin-specific and human melanoma-associated antigen recognized by T cells (MART-1)-specific CD8(+) T cells were used to demonstrate cross-presentation via this alternate, receptor recycling pathway, which operated independently of the proteasome and the transporter-associated with antigen presentation. Finally, we found that cross-presentation of VLPs in vivo was not confined to CD8α(+) DC subsets. These data define the cross-presentation pathway for RHDV VLPs and may lead to improved cancer immunotherapies.
    Full-text · Article · Jan 2011 · Immunology and Cell Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous structural studies on intact, infectious murine norovirus 1 (MNV-1) virions demonstrated that the receptor binding protruding (P) domains are lifted off the inner shell of the virus. Here, the three-dimensional (3D) reconstructions of recombinant rabbit hemorrhagic disease virus (rRHDV) virus-like particles (VLPs) and intact MNV-1 were determined to ∼8-Å resolution. rRHDV also has a raised P domain, and therefore, this conformation is independent of infectivity and genus. The atomic structure of the MNV-1 P domain was used to interpret the MNV-1 reconstruction. Connections between the P and shell domains and between the floating P domains were modeled. This observed P-domain flexibility likely facilitates virus-host receptor interactions.
    Full-text · Article · Mar 2010 · Journal of Virology
  • V.L. Young · K.M.B. Sneddon · V.K. Ward
    [Show abstract] [Hide abstract]
    ABSTRACT: The lightbrown apple moth (Epiphyas postvittana) is a leafroller pest that damages horticultural crops in New Zealand. This paper documents the establishment of a primary cell line from neonate E. postvittana larvae to facilitate the development of E. postvittana nucleopolyhedrovirus (EppoNPV) for control of this pest. The cell line was cultured for 36 passages and a clonal derivative designated EpN1.10 was generated that had a doubling time of 36h at 21 degrees C. The EpN1.10 cell line allowed for recovery of EppoNPV from transfected genomic DNA and virus passage, as determined by occlusion body production and restriction endonuclease analysis.
    No preview · Article · Feb 2010 · Journal of Invertebrate Pathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The painted apple moth (PAM), Teia anartoides (Walker) (Lepidoptera: Lymantriidae) made a recent incursion into New Zealand. A nucleopolyhedrovirus (NPV), Orgyia anartoides NPV (OranNPV), originally isolated from PAM in Australia, was tested for its pathogenicity to PAM and a range of non-target insect species found in New Zealand, to evaluate its suitability as a microbial control for this insect invader. Dosage-mortality tests showed that OranNPV was highly pathogenic to PAM larvae; mean LT50 values for third instars ranged from 17.9 to 8.1 days for doses from 102 to 105 polyhedral inclusion bodies/larva, respectively. The cause of death in infected insects was confirmed as OranNPV. Molecular analysis established that OranNPV can be identified by PCR and restriction digestion, and this process complemented microscopic examination of infected larvae. No lymantriid species occur in New Zealand; however, the virus had no significant effects on species from five other lepidopteran families (Noctuidae, Tortricidae, Geometridae, Nymphalidae and Plutellidae) or on adult honeybees. Thus, all indications from this initial investigation are that OranNPV would be an important tool in the control of PAM in a future incursion of this species into New Zealand.
    No preview · Article · Jan 2010 · Journal of Applied Entomology

Publication Stats

1k Citations
248.10 Total Impact Points

Institutions

  • 1987-2015
    • University of Otago
      • Department of Microbiology and Immunology
      Taieri, Otago, New Zealand
  • 2001
    • University of Melbourne
      • Department of Microbiology and Immunology
      Melbourne, Victoria, Australia
  • 2000
    • Iowa State University
      • Department of Entomology
      Ames, Iowa, United States
  • 1991-1997
    • University of California, Davis
      • • Department of Environmental Toxicology
      • • Department of Entomology
      Davis, CA, United States
  • 1989
    • Oxford Institute for Energy Studies
      Oxford, England, United Kingdom