Neil Aronin

University of Massachusetts Amherst, Amherst Center, Massachusetts, United States

Are you Neil Aronin?

Claim your profile

Publications (137)947.99 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.Molecular Therapy (2015); doi:10.1038/mt.2015.231.
    No preview · Article · Dec 2015 · Molecular Therapy
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Pheochromocytomas and paragangliomas (PPGLs) are genetically heterogeneous tumors of neural crest origin, but the molecular basis of most PPGLs is unknown. Experimental design: We performed exome or transcriptome sequencing of 43 samples from 41 patients. A validation set of 136 PPGLs was used for amplicon-specific resequencing. In addition, a subset of these tumors was used for microarray-based transcription, protein expression and histone methylation analysis by western blot or immunohistochemistry. In vitro analysis of mutants was performed in cell lines. Results: We detected mutations in chromatin remodeling genes, including histone-methyltransferases, histone-demethylases and histones in 11 samples from 8 patients (20%). In particular, we characterized a new cancer syndrome involving PPGLs and giant cell tumors of bone (GCT) caused by a postzygotic G34W mutation of the histone 3.3 gene, H3F3A. Furthermore, mutations in kinase genes were detected in samples from 15 patients (37%). Among those, a novel germline kinase domain mutation of MERTK detected in a patient with PPGL and medullary thyroid carcinoma was found to activate signaling downstream of this receptor. Recurrent germline and somatic mutations were also detected in MET, including a familial case and sporadic PPGLs. Importantly, in each of these three genes mutations were also detected in the validation group. Additionally, a somatic oncogenic hotspot FGFR1 mutation was found in a sporadic tumor. Conclusions: This study implicates chromatin-remodeling and kinase variants as frequent genetic events in PPGLs, many of which have no other known germline driver mutation. MERTK, MET, and H3F3A emerge as novel PPGL susceptibility genes.
    No preview · Article · Dec 2015 · Clinical Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs) added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington's disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context.
    Preview · Article · Dec 2015 · Molecular Therapy - Nucleic Acids
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical development of RNA interference (RNAi)-based therapeutics requires a rapid, accurate, and robust method of simultaneously quantifying mRNA knockdown in hundreds of samples. The most well-established method to achieve this is quantitative real-time polymerase chain reaction (qRT-PCR), a labor-intensive methodology that requires sample purification, which increases the potential to introduce additional bias. Here, we describe that the QuantiGene(®) branched DNA (bDNA) assay linked to a 96-well Qiagen TissueLyser II is a quick and reproducible alternative to qRT-PCR for quantitative analysis of mRNA expression in vivo directly from tissue biopsies. The bDNA assay is a high-throughput, plate-based, luminescence technique, capable of directly measuring mRNA levels from tissue lysates derived from various biological samples. We have performed a systematic evaluation of this technique for in vivo detection of RNAi-based silencing. We show that similar quality data is obtained from purified RNA and tissue lysates. In general, we observe low intra- and inter-animal variability (around 10% for control samples), and high intermediate precision. This allows minimization of sample size for evaluation of oligonucleotide efficacy in vivo.
    Full-text · Article · Nov 2015 · Nucleic Acid Therapeutics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The immune system In Huntington's disease (HD) is activated and may overreact to some therapies. RNA interference using siRNA lowers mutant huntingtin (mHTT) protein but could increase immune responses. Objective: To examine the innate immune response following siRNA infusion into the striatum of wild-type (WT) and HD transgenic (YAC128) mice. Methods: siRNAs (2'-O-methyl phosphorothioated) were infused unilaterally into striatum of four month-old WT and YAC128 mice for 28 days. Microglia number and morphology (resting (normal), activated, dystrophic), cytokine levels, and DARPP32-positive neurons were measured in striatum immediately or 14 days post-infusion. Controls included contralateral untreated striatum, and PBS and sham treated striata. Results: The striata of untreated YAC128 mice had significantly fewer resting microglia and more dystrophic microglia than WT mice, but no difference from WT in the proportion of activated microglia or total number of microglia. siRNA infusion increased the total number of microglia in YAC128 mice compared to PBS treated and untreated striata and increased the proportion of activated microglia in WT and YAC128 mice compared to untreated striata and sham treated groups. Cytokine levels were low and siRNA infusion resulted in only modest changes in those levels. siRNA infusion did not change the number of DARPP32-positive neurons. Conclusion: Findings suggest that siRNA infusion may be a safe method for lowering mHTT levels in the striatum in young animals, since treatment does not produce a robust cytokine response or cause neurotoxicity. The potential long-term effects of a sustained increase in total and activated microglia after siRNA infusion in HD mice need to be explored.
    No preview · Article · Sep 2015 · Journal of Huntington's disease
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA) and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General Public Licence v3.0 at http://www.bioconductor.org.
    Preview · Article · Sep 2014 · PLoS ONE
  • Neil Aronin · Marian DiFiglia
    [Show abstract] [Hide abstract]
    ABSTRACT: The idea to lower mutant huntingtin is especially appealing in Huntington's disease (HD). It is autosomal dominant, so that expression of the mutant allele causes the disease. Advances in RNA and gene regulation provide foundations for the huntingtin gene (both normal and mutant alleles) and possibly the mutant allele only. There is much preclinical animal work to support the concept of gene and RNA silencing, but, to date, no clinical studies have been attempted in HD. Preventing expression of mutant huntingtin protein is at the cusp for a human trial. Antisense oligonucleotides delivered to patients with amyotrophic lateral sclerosis have been well tolerated; small RNAs administered to rodent and nonhuman primate brain knocked down huntingtin messenger RNA (mRNA); short-hairpin complementary DNA of microRNAs can be expressed in adeno-associated virus to provide long-term silencing of huntingtin mRNA and protein. We expect that these approaches will be ready for clinical studies in the near future, once safety has been validated. Our understanding of gene editing—changing the huntingtin gene itself—is rapidly progressing. Harnessing our knowledge of transcription and translation should push scientific creativity to new and exciting advances that overcome the lethality of the mutant gene in HD. © 2014 International Parkinson and Movement Disorder Society
    No preview · Article · Sep 2014 · Movement Disorders
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Increasing mutant huntingtin (mHTT) clearance through the autophagy pathway may be a way to treat Huntington's disease (HD). Tools to manipulate and measure autophagy flux in brain in vivo are not well established. Objective: To examine the in vivo pharmacokinetics and pharmacodynamics of the lysosomal inhibitor chloroquine (CQ) and the levels of selected autophagy markers to determine usefulness of CQ as a tool to study autophagy flux in brain. Methods: Intraperitoneal injections of CQ were administered to WT and HDQ175/Q175 mice. CQ levels were measured by LC-MS/MS in WT brain, muscle and blood at 4 to 24 hours after the last dose. Two methods of tissue preparation were used to detect by Western blot levels of the macroautophagy markers LC3II and p62, the chaperone mediated autophagy receptor LAMP-2A and the late endosome/lysosomal marker RAB7. Results: Following peripheral administration, CQ levels were highest in muscle and declined rapidly between 4 and 24 hours. In the brain, CQ levels were greater in the cortex than striatum, and levels persisted up to 24 hours post-injection. CQ treatment induced changes in LC3II and p62 that were variable across regions and tissue preparations. HDQ175/Q175 mice exposed to CQ had variable but diminished levels of LC3II, p62 and LAMP-2A, and increased levels of RAB7. Higher levels of mHTT were found in the membrane compartment of CQ treated HD mice. Conclusion: Our findings suggest that the response of brain to CQ treatment, a blocker of autophagy flux, is variable and not as robust as it has been demonstrated in vitro, suggesting that CQ treatment has limitations for modulating autophagy flux in vivo. Alternative methods, compounds, and technologies need to be developed to further investigate autophagy flux in vivo, especially in the brain.
    Full-text · Article · Jul 2014 · Journal of Huntington's disease
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Firefly luciferase is the most widely used optical reporter for noninvasive bioluminescence imaging (BLI) in rodents. BLI relies on the ability of the injected luciferase substrate D-luciferin to access luciferase-expressing cells and tissues within the animal. Here we show that injection of mice with a synthetic luciferin, CycLuc1, improves BLI with existing luciferase reporters and enables imaging in the brain that could not be achieved with D-luciferin.
    Full-text · Article · Feb 2014 · Nature Methods
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFκB pathway, whereby it interacts with IKKγ, leads to increased degradation of IκB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.
    Full-text · Article · Jan 2014 · Brain
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic connections are disrupted in patients with Huntington's disease (HD). Synaptosomes from postmortem brain are ideal for synaptic function studies because they are enriched in pre- and post-synaptic proteins important in vesicle fusion, vesicle release, and neurotransmitter receptor activation. To examine striatal synaptosomes from 3, 6 and 12 month old WT and Hdh(140Q/140Q) knock-in mice for levels of synaptic proteins, methionine oxidation, and glutamate release. We used Western blot analysis, glutamate release assays, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Striatal synaptosomes of 6 month old Hdh(140Q/140Q) mice had less DARPP32, syntaxin 1 and calmodulin compared to WT. Striatal synaptosomes of 12 month old Hdh(140Q/140Q) mice had lower levels of DARPP32, alpha actinin, HAP40, Na(+)/K(+)-ATPase, PSD95, SNAP-25, TrkA and VAMP1, VGlut1 and VGlut2, increased levels of VAMP2, and modifications in actin and calmodulin compared to WT. More glutamate released from vesicles of depolarized striatal synaptosomes of 6 month old Hdh(140Q/140Q) than from age matched WT mice but there was no difference in glutamate release in synaptosomes of 3 and 12 month old WT and Hdh(140Q/140Q) mice. LC-MS/MS of 6 month old Hdh(140Q/140Q) mice striatal synaptosomes revealed that about 4% of total proteins detected (>600 detected) had novel sites of methionine oxidation including proteins involved with vesicle fusion, trafficking, and neurotransmitter function (synaptophysin, synapsin 2, syntaxin 1, calmodulin, cytoplasmic actin 2, neurofilament, and tubulin). Altered protein levels and novel methionine oxidations were also seen in cortical synaptosomes of 12 month old Hdh(140Q/140Q) mice. Findings provide support for early synaptic dysfunction in Hdh(140Q/140Q) knock-in mice arising from altered protein levels, oxidative damage, and impaired glutamate neurotransmission and suggest that study of synaptosomes could be of value for evaluating HD therapies.
    Full-text · Article · Oct 2013 · Journal of Huntington's disease
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Huntington's disease is caused by expansion of CAG trinucleotide repeats in the first exon of the huntingtin gene, which is essential for both development and neurogenesis. Huntington's disease is autosomal dominant. The normal allele contains 6 to 35 CAG triplets (average, 18) and the mutant, disease-causing allele contains >36 CAG triplets (average, 42). Objective: We examined 279 postmortem brain samples, including 148 HD and 131 non-HD controls. A total of 108 samples from 87 HD patients that are heterozygous at SNP rs362307, with a normal allele (18 to 27 CAG repeats) and a mutant allele (39 to 73 CAG repeats) were used to measure relative abundance of mutant and wild-type huntingtin mRNA. Methods: We used allele-specific, quantitative RT-PCR based on SNP heterozygosity to estimate the relative amount of mutant versus normal huntingtin mRNA in postmortem brain samples from patients with Huntington's disease. Results: In the cortex and striatum, the amount of mRNA from the mutant allele exceeds that from the normal allele in 75% of patients. In the cerebellum, no significant difference between the two alleles was evident. Brain tissues from non-HD controls show no significant difference between two alleles of huntingtin mRNAs. Allelic differences were more pronounced at early neuropathological grades (grades 1 and 2) than at late grades (grades 3 and 4). Conclusion: More mutant HTT than normal could arise from increased transcription of mutant HTT allele, or decreased clearance of mutant HTT mRNA, or both. An implication is that equimolar silencing of both alleles would increase the mutant HTT to normal HTT ratio.
    No preview · Article · Jan 2013 · Journal of Huntington's disease
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our goal is delivery of a long-term treatment for Huntington's disease. We administer intracerebrally in sheep adeno-associated virus (AAV) to establish optimal safety, spread and neuronal uptake of AAV based therapeutics. Sheep have large gyrencephalic brains and offer the opportunity to study a transgenic Huntington's disease model. However, lack of a relevant brain stereotactic atlas and the difficulty of skull fixation make conventional stereotaxy unreliable. We describe a multi-modal image-guidance technique to achieve accurate placement of therapeutics into the sheep striatum.
    Full-text · Article · Jan 2013 · Journal of Huntington's disease
  • Neil Aronin · Melissa Moore

    No preview · Article · Nov 2012 · New England Journal of Medicine

  • No preview · Article · Aug 2012 · Journal of Neurology Neurosurgery & Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer.
    Preview · Article · Feb 2012 · Journal of Biological Chemistry

  • No preview · Article · Feb 2012 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Convection-enhanced delivery (CED) has been shown to be an effective method of administering macromolecular compounds into the brain that are unable to cross the blood-brain barrier. Because the administration is highly localized, accurate cannula placement by minimally invasive surgery is an important requisite. This paper reports on the use of an angiographic c-arm system which enables truly frameless multimodal image guidance during CED surgery. Methods A microcannula was placed into the striatum of five sheep under real-time fluoroscopic guidance using imaging data previously acquired by cone beam computed tomography (CBCT) and MRI, enabling three-dimensional navigation. After introduction of the cannula, high resolution CBCT was performed and registered with MRI to confirm the position of the cannula tip and to make adjustments as necessary. Adeno-associated viral vector-10, designed to deliver small-hairpin micro RNA (shRNAmir), was mixed with 2.0 mM gadolinium (Gd) and infused at a rate of 3 μl/min for a total of 100 μl. Upon completion, the animals were transferred to an MR scanner to assess the approximate distribution by measuring the volume of spread of Gd. Results The cannula was successfully introduced under multimodal image guidance. High resolution CBCT enabled validation of the cannula position and Gd-enhanced MRI after CED confirmed localized administration of the therapy. Conclusion A microcannula for CED was introduced into the striatum of five sheep under multimodal image guidance. The non-alloy 300 μm diameter cannula tip was well visualized using CBCT, enabling confirmation of the position of the end of the tip in the area of interest.
    Full-text · Article · Dec 2011 · Journal of Neurointerventional Surgery
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small RNAs loaded into Argonaute proteins direct silencing of complementary target mRNAs. It has been proposed that multiple, imperfectly complementary small interfering RNAs or microRNAs, when bound to the 3' untranslated region of a target mRNA, function cooperatively to silence target expression. We report that, in cultured human HeLa cells and mouse embryonic fibroblasts, Argonaute1 (Ago1), Ago3, and Ago4 act cooperatively to silence both perfectly and partially complementary target RNAs bearing multiple small RNA-binding sites. Our data suggest that for Ago1, Ago3, and Ago4, multiple, adjacent small RNA-binding sites facilitate cooperative interactions that stabilize Argonaute binding. In contrast, small RNAs bound to Ago2 and pairing perfectly to an mRNA target act independently to silence expression. Noncooperative silencing by Ago2 does not require the endoribonuclease activity of the protein: A mutant Ago2 that cannot cleave its mRNA target also silences noncooperatively. We propose that Ago2 binds its targets by a mechanism fundamentally distinct from that used by the three other mammalian Argonaute proteins.
    Full-text · Article · Aug 2011 · RNA
  • Source
    Dinah W.Y. Sah · Neil Aronin
    [Show abstract] [Hide abstract]
    ABSTRACT: Huntington disease is an autosomal dominant neurodegenerative disorder caused by a toxic expansion in the CAG repeat region of the huntingtin gene. Oligonucleotide approaches based on RNAi and antisense oligonucleotides provide promising new therapeutic strategies for direct intervention through reduced production of the causative mutant protein. Allele-specific and simultaneous mutant and wild-type allele-lowering strategies are being pursued with local delivery to the brain, each with relative merits. Delivery remains a key challenge for translational success, especially with chronic therapy. The potential of disease-modifying oligonucleotide approaches for Huntington disease will be revealed as they progress into clinical trials.
    Preview · Article · Feb 2011 · The Journal of clinical investigation

Publication Stats

13k Citations
947.99 Total Impact Points

Institutions

  • 1992-2015
    • University of Massachusetts Amherst
      Amherst Center, Massachusetts, United States
  • 1982-2014
    • University of Massachusetts Medical School
      • • Department of Medicine
      • • RNA Therapeutics Institute (RTI)
      • • Department of Physiology
      • • Department of Biochemistry and Molecular Pharmacology
      • • Department of Neurology
      • • Division of Cardiovascular
      Worcester, Massachusetts, United States
  • 1982-1999
    • Massachusetts General Hospital
      • • Department of Neurology
      • • Molecular Neurobiology Laboratory
      Boston, MA, United States
  • 1982-1998
    • Harvard Medical School
      • Department of Neurology
      Boston, Massachusetts, United States