Are you Andrew Potter?

Claim your profile

Publications (3)11.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of the Chk1 kinase by small molecules is of great therapeutic interest for oncology and in understanding the cellular regulation of the G2/M checkpoint. We report how computational docking of a large electronic catalogue of compounds to an X-ray structure of the Chk1 ATP-binding site allowed prioritisation of a small subset of these compounds for assay. This led to the discovery of 10 novel Chk1 inhibitors, distributed among nine new and clearly different chemical scaffolds. Several of these scaffolds have promising lead-like properties. All these ligands act by competitive binding to the targeted ATP site. The crystal structures of four of these compounds bound to this site are presented, and reasonable modelled docking modes are suggested for the 5 other scaffolds. This structural context is used to assess the potential of these scaffolds for further medicinal chemistry efforts, suggesting that several of them could be elaborated to make additional interactions with the buried part of the ATP site. Some unusual interactions with the conserved kinase backbone motif are pointed out. The ligand-binding modes are also used to discuss their medicinal chemistry potential with respect to undesirable chemical functionalities, whether these functionalities bind directly to the protein or not. Overall, this work illustrates how virtual screening can identify a diverse set of ligands which bind to the targeted site. The structural models for these ligands in the Chk1 ATP-binding site will facilitate further medicinal chemistry efforts targeting this kinase.
    No preview · Article · Aug 2006 · Bioorganic & Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of the Chk1 kinase by small molecules binding to its active site is a strategy of great therapeutic interest for oncology. We report how computational modelling predicted the binding mode of ligands of special interest to the Chk1 ATP site, for representatives of an indazole series and debromohymenialdisine. These binding modes were subsequently confirmed by X-ray crystallography. The binding mode of a potent indazole derivative involves non-conventional C-H...O and N-H...pi-aromatic interactions with the protein. These interactions are formed in a buried pocket at the periphery of the ATP-binding site, the importance of which has previously been overlooked for ligand design against Chk1. It is demonstrated that filling this pocket can confer ligands with dramatically enhanced affinity for Chk1. Structural arguments in conjunction with assay data explain why targeting this pocket is also advantageous for selective binding to Chk1. Structural overlays of known inhibitors complexed with Chk1 show that only the indazole series utilizes the pocket of interest. Therefore, the analysis presented here should prove helpful in guiding future structure-based ligand design efforts against Chk1.
    No preview · Article · Apr 2006 · Bioorganic & Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery, synthesis, and crystallographic binding mode of novel furanopyrimidine and pyrrolopyrimidine inhibitors of the Chk1 kinase, an oncology target. These inhibitors are synthetically tractable and inhibit Chk1 by competing for its ATP site. A chronological account allows an objective comparison of modeled compound docking modes to the subsequently obtained crystal structures. The comparison provides insights regarding the interpretation of modeling results, in relationship to the multiple reasonable docking modes which may be obtained in a kinase-ATP site. The crystal structures were used to guide medicinal chemistry efforts. This led to a thorough characterization of a pair of ligand-protein complexes which differ by a single hydrogen bond. An analysis indicates that this hydrogen bond is expected to contribute a fraction of the 10-fold change in binding affinity, adding a valuable observation to the debate about the energetic role of hydrogen bonding in molecular recognition.
    No preview · Article · Jul 2005 · Journal of Medicinal Chemistry