Pania Mouat

Massey University, Palmerston North City, Manawatu-Wanganui, New Zealand

Are you Pania Mouat?

Claim your profile

Publications (5)12.36 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bovine tuberculosis costs New Zealand more than $80 million per year, mostly because extensive areas of the country are occupied by brushtail possums infected with Mycobacterium bovis. AgResearch has a major programme to produce new live tuberculosis vaccines that can be delivered to possums. Primary work involved development of molecular biological methods to enable genetic manipulation of M. bovis, including the production of random and specific mutants. Many avirulent mutants of M. bovis have been produced and their vaccine efficacy has been compared to BCG in guinea pigs. Selected mutants that perform at least as well as BCG are retested in guinea pigs using an extended vaccination protocol in which animals are pre-sensitized to environmental mycobacteria to mimic natural exposure. Ten candidate vaccines that have induced good protection in guinea pigs have been subsequently tested as vaccines in possums. While the protective efficacy of an M. bovis mutant inoculated into guinea pigs reliably indicated that some protection would be induced in possums, the most protective mutant in guinea pigs was different from that in possums. This illustrates the importance of testing in the target species as part of new vaccine development. An important outcome of this work was the identification of an operon in M. bovis whose inactivation produced an avirulent M. bovis vaccine candidate that was better than BCG in protecting possums from experimental tuberculosis. Allelic exchange methods are now being used to produce vaccine strains with multiple specific mutations to improve safety and immunological characteristics.
    No preview · Article · Feb 2011 · Veterinary Microbiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structure of an active form of ScpA has been solved to 1.9 A resolution. ScpA is a multidomain cell-envelope subtilase from Streptococcus pyogenes that cleaves complement component C5a. The catalytic triad of ScpA is geometrically consistent with other subtilases, clearly demonstrating that the additional activation mechanism proposed for the Streptococcus agalactiae homologue (ScpB) is not required for ScpA. The ScpA structure revealed that access to the catalytic site is restricted by variable regions in the catalytic domain (vr7, vr9, and vr11) and by the presence of the inserted protease-associated (PA) domain and the second fibronectin type III domains (Fn2). Modeling of the ScpA-C5a complex indicates that the substrate binds with carboxyl-terminal residues (65-74) extended through the active site and core residues (1-64) forming exosite-type interactions with the Fn2 domain. This is reminiscent of the two-site mechanism proposed for C5a binding to its receptor. In the nonprime region of the active site, interactions with the substrate backbone are predicted to be more similar to those observed in kexins, involving a single beta-strand in the peptidase. However, in contrast to kexins, there would be diminished emphasis on side-chain interactions, with little charged character in the S3-S1 and S6-S4 subsites occupied by the side chains of residues in vr7 and vr9. Substrate binding is anticipated to be dominated by ionic interactions in two distinct regions of ScpA. On the prime side of the active site, salt bridges are predicted between P1', P2', and P7' residues, and residues in the catalytic and PA domains. Remote to the active site, a larger number of ionic interactions between residues in the C5a core and the Fn2 domain are observed in the model. Thus, both PA and Fn2 domains are expected to play significant roles in substrate recognition.
    No preview · Article · Feb 2009 · Journal of Molecular Biology
  • Grant S Hotter · Pania Mouat · Desmond M Collins
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium bovis and Mycobacterium tuberculosis possess four glutamine synthetase homologues, two of which, glnA1 and glnA2, are required for virulence and are located on the bacterial chromosome on either side of glutamine synthetase adenylyltransferase (glnE). While glnA1 is encoded on the complementary strand, glnA2 is located 48bp upstream from glnE, raising the possibility that glnA2 and glnE may be co-transcribed. However, previous studies in M. bovis and M. tuberculosis have painted a contradictory picture of the (co)transcriptional status of glnA2 and glnE. Given the importance of the genes at the glnA1-glnE-glnA2 locus, we sought to clarify the transcriptional status of glnA2 and glnE in both M. bovis and M. tuberculosis. Reverse transcription-PCR demonstrated that glnA2 and glnE were independently transcribed in all six M. bovis and M. tuberculosis strains examined. Northern analysis of the glnA2 transcript in M. bovis AF2122/97 and M. tuberculosis H37Rv showed that it was monocistronic. These results predicted the presence of a glnE transcriptional start site in the glnA2-glnE intergenic region. An identical start site was confirmed in M. bovis AF2122/97 and M. tuberculosis H37Rv using 5' rapid amplification of cDNA ends. Typical mycobacterial -10 and -35 sequences are associated with this start site.
    No preview · Article · May 2008 · Tuberculosis (Edinburgh, Scotland)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The unusual and complex cell wall of pathogenic mycobacteria plays a major role in pathogenesis, with specific complex lipids acting as defensive, offensive, or adaptive effectors of virulence. The phthiocerol and phthiodiolone dimycocerosate esters (PDIMs) comprise one such category of virulence-enhancing lipids. Recent work in several laboratories has established that the Mycobacterium tuberculosis fadD26-mmpL7 (Rv2930-Rv2942) locus plays a major role in PDIM biosynthesis and secretion and that PDIM is required for virulence. Here we describe two independent transposon mutants (WAg533 and WAg537) of Mycobacterium bovis, both of which carry an insertion in Mb0100 (= M. tuberculosis Rv0097) to reveal a new locus involved in PDIM biosynthesis. The mutations have a polar effect on expression of the downstream genes Mb0101, Mb0102 (fadD10), Mb0103, and Mb0104 (nrp), and Mb0100 is shown to be in an operon comprising these genes and Mb0099. Reverse transcription-PCR analysis shows elevated transcription of genes in the operon upstream from the transposon insertion sites in both mutants. Both mutants have altered colony morphology and do not synthesize PDIMs or glycosylphenol-PDIM. Both mutants are avirulent in a guinea pig model of tuberculosis, and when tested as a vaccine, WAg533 conferred protective immunity against M. bovis infection at least equal to that afforded by M. bovis bacillus Calmette-Guérin.
    Full-text · Article · May 2005 · Journal of Bacteriology
  • Pania Dawn. Mouat
    [Show abstract] [Hide abstract]
    ABSTRACT: Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry. Thesis (M. Sc.)--Massey University, Palmerston North, 2002. Includes bibliographical references (leaves 101-106).
    No preview · Article ·

Publication Stats

48 Citations
12.36 Total Impact Points


  • 2009
    • Massey University
      • Institute of Molecular BioSciences
      Palmerston North City, Manawatu-Wanganui, New Zealand
  • 2005
    • University of Birmingham
      • School of Biosciences
      Birmingham, ENG, United Kingdom