Are you Shan-Shan Yu?

Claim your profile

Publications (2)0 Total impact

  • Wei-Feng Liu · Shan-Shan Yu · Guan-Jun Chen · Yue-Zhong Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic DNA is under constant attack from both endogenous and exogenous sources of DNA damaging agents. Without proper care, the ensuing DNA damages would lead to alteration of genomic structure thus affecting the faithful transmission of genetic information. During the process of evolution, organisms have acquired a series of mechanisms responding to and repairing DNA damage, thus assuring the maintenance of genome stability and faithful transmission of genetic information. DNA damage checkpoint is one such important mechanism by which, in the face of DNA damage, a cell can respond to amplified damage signals, either by actively halting the cell cycle until it ensures that critical processes such as DNA replication or mitosis are complete or by initiating apoptosis as a last resort. Over the last decade, complex hierarchical interactions between the key components like ATM/ATR in the checkpoint pathway and various other mediators, effectors including DNA damage repair proteins have begun to emerge. In the meantime, an intimate relationship between mechanisms of damage checkpoint pathway, DNA damage repair, and genome stability was also uncovered. Reviewed herein are the recent findings on both the mechanisms of activation of checkpoint pathways and their coordination with DNA damage repair machinery as well as their effect on genomic integrity.
    No preview · Article · Jun 2006 · Acta Genetica Sinica
  • Wei-Feng Liu · Shan-Shan Yu · Yue-Zhong Li
    [Show abstract] [Hide abstract]
    ABSTRACT: NF-kappaB, a collective name of dimeric transcription factors, is composed of members of the Rel family proteins that recognize and bind a specific DNA sequence. It is normally sequestered in the cytoplasm of non-stimulated cells by associating with a family of inhibitor proteins called IkappaBs. Exposure of cells to a variety of extra-and intra-cellular stimuli leads to the rapid proteolytic degradation of IkappaBs, which frees NF-kappaBs allowing them to translocate to the nucleus where it regulates gene transcription. NF-kappaB is involved in a lot of physiological processes such as immunity, inflammation, cell proliferation, apoptosis and even tumorigenesis by regulating the transcription of a larger number of genes. This review introduces the various mechanisms of NF-kappaB activation including a recently reported alternative activation pathway mediated by lymphotoxin alpha/beta, B cell activating factor and CD40 ligand. The signal transduction pathway leading to NF-kappaB activation via IKK in response to proinflammatory factors like TNF-alpha and IL-1 is addressed in more detail concerning the regulation of IKK activity, mechanism of IkappaB degradation and regulation of transactivation activity of NF-kappaB on different levels. Considering the important role of NF-kappaB in cell proliferation and regulation of various genes participating in apoptosis, the involvement of NF-kappaB in tumorigenesis and drug screening is also discussed.
    No preview · Article · Feb 2005 · Sheng wu gong cheng xue bao = Chinese journal of biotechnology