Yukiko Ueda

Vanderbilt University, Nashville, Michigan, United States

Are you Yukiko Ueda?

Claim your profile

Publications (3)15.9 Total impact

  • Source
    Yukiko Ueda · Yingjun Su · Ann Richmond
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the nuclear factor-kappa beta (NF-kappaB) family maintain cellular homeostasis by enhancing the transcription of genes involved in inflammation, immune response, cell proliferation, and apoptosis. Melanoma tumor cells often express inflammatory mediators through enhanced activation of NF-kappaB. The NF-kappaB activation appears to result from the enhancer formation including NF-kappaB and lysine acetyl transferases such as p300, CREB (cyclic AMP-responsive element binding protein)-binding protein (CBP), and/or p300/CBP associating factor (PCAF). We observed that proteins expressed by Hs294T metastatic melanoma cells are highly acetylated compared with normal melanocytes, and dominant-negative PCAF reduced the basal and tumor necrosis factor-alpha-stimulated transcriptional activity of NF-kappaB. The promoter activity of NF-kappaB-regulated chemokines was also reduced by the expression of dominant-negative PCAF. The promoters of these chemokines contain a CCAAT displacement protein (CDP)-binding site near the NF-kappaB element. compared with vector-transduced cells, in CDP-transduced Hs294T cells: (i) over-expressed CDP bound efficiently to PCAF, (ii) tumor necrosis factor-alpha-stimulated chemokine expression and NF-kappaB-mediated transcription were reduced, and (iii) the binding of CBP to Rel A was reduced. These data suggest that CDP inhibits cytokine-induced NF-kappaB-regulated chemokine transcription. This study contributes to our understanding of the role of CDP in an enhanceosome of NF-kappaB-mediated chemokine transcription in human melanoma cells.
    Preview · Article · May 2007 · Melanoma Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CXC chemokine receptor 4 (CXCR4) contributes to the metastasis of human breast cancer cells. The CXCR4 COOH-terminal domain (CTD) seems to play a major role in regulating receptor desensitization and down-regulation. We expressed either wild-type CXCR4 (CXCR4-WT) or CTD-truncated CXCR4 (CXCR4-DeltaCTD) in MCF-7 human mammary carcinoma cells to determine whether the CTD is involved in CXCR4-modulated proliferation of mammary carcinoma cells. CXCR4-WT-transduced MCF-7 cells (MCF-7/CXCR4-WT cells) do not differ from vector-transduced MCF-7 control cells in morphology or growth rate. However, CXCR4-DeltaCTD-transduced MCF-7 cells (MCF-7/CXCR4-DeltaCTD cells) exhibit a higher growth rate and altered morphology, potentially indicating an epithelial-to-mesenchymal transition. Furthermore, extracellular signal-regulated kinase (ERK) activation and cell motility are increased in these cells. Ligand induces receptor association with beta-arrestin for both CXCR4-WT and CXCR4-DeltaCTD in these MCF-7 cells. Overexpressed CXCR4-WT localizes predominantly to the cell surface in unstimulated cells, whereas a significant portion of overexpressed CXCR4-DeltaCTD resides intracellularly in recycling endosomes. Analysis with human oligomicroarray, Western blot, and immunohistochemistry showed that E-cadherin and Zonula occludens are down-regulated in MCF-7/CXCR4-DeltaCTD cells. The array analysis also indicates that mesenchymal marker proteins and certain growth factor receptors are up-regulated in MCF-7/CXCR4-DeltaCTD cells. These observations suggest that (a) the overexpression of CXCR4-DeltaCTD leads to a gain-of-function of CXCR4-mediated signaling and (b) the CTD of CXCR4-WT may perform a feedback repressor function in this signaling pathway. These data will contribute to our understanding of how CXCR4-DeltaCTD may promote progression of breast tumors to metastatic lesions.
    Full-text · Article · Jul 2006 · Cancer Research
  • Source
    Yukiko Ueda · Ann Richmond
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic melanoma is an aggressive skin cancer that is notoriously resistant to current cancer therapies. In human melanoma, nuclear factor-kappa B (NF-kappaB) is upregulated, leading to the deregulation of gene transcription. In this review, we discuss (i) the relationship between gene alteration in melanoma and upregulation of NF-kappaB, (ii) mechanisms by which activated NF-kappaB switch from pro-apoptotic to anti-apoptotic functions in melanoma and (iii) autocrine mechanisms that promote constitutive activation of NF-kappaB in metastatic melanoma.
    Preview · Article · May 2006 · Pigment Cell Research

Publication Stats

136 Citations
15.90 Total Impact Points


  • 2006-2007
    • Vanderbilt University
      • Department of Cancer Biology
      Nashville, Michigan, United States