D. O. Topping

The University of Manchester, Manchester, England, United Kingdom

Are you D. O. Topping?

Claim your profile

Publications (68)265.49 Total impact

  • Source
    S. O'Meara · D.O Topping · G. McFiggans
    [Show abstract] [Hide abstract]
    ABSTRACT: The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1-90% predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60% final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1x1025 m2s−1 in pure form). This, as well as other results here, questions whether particle-phase diffusion can be a limiting factor in gas-particle mass transfer in the ambient atmosphere, at least for water-soluble particles. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.
    Preview · Article · Jan 2016 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we describe the development and application of a new web based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic–organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles; absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES strings and UManSysProp will automatically extract the relevant information for calculations. Built using open source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web-interface, or can be accessed using the user's own code via a JSON API. In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.
    No preview · Article · Nov 2015 · Geoscientific Model Development Discussions

  • No preview · Article · Jul 2015 · ChemInform
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.
    Full-text · Article · May 2015 · Chemical Reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laboratory measurements of vapour pressures for atmospherically relevant compounds were collated and used to assess the accuracy of vapour pressure estimates generated by seven estimation methods and impacts on predicted secondary organic aerosol. Of the vapour pressure estimation methods that were applicable to all the test set compounds, the Lee-Kesler [Reid et al., The Properties of Gases and Liquids, 1987] method showed the lowest mean absolute error and the Nannoolal et al. [Nannoonal et al., Fluid Phase Equilib., 2008, 269, 117-133] method showed the lowest mean bias error (when both used normal boiling points estimated using the Nannoolal et al. [Nannoolal et al., Fluid Phase Equilib., 2004, 226, 45-63] method). The effect of varying vapour pressure estimation methods on secondary organic aerosol (SOA) mass loading and composition was investigated using an absorptive partitioning equilibrium model. The Myrdal and Yalkowsky [Myrdal and Yalkowsky, Ind. Eng. Chem. Res., 1997, 36, 2494-2499] vapour pressure estimation method using the Nannoolal et al. [Nannoolal et al., Fluid Phase Equilib., 2004, 226, 45-63] normal boiling point gave the most accurate estimation of SOA loading despite not being the most accurate for vapour pressures alone.
    Preview · Article · Aug 2014 · Physical Chemistry Chemical Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The growth, composition, and evolution of secondary organic aerosol (SOA) are governed by properties of individual compounds and ensemble mixtures that affect partitioning between the vapour and condensed phase. There has been considerable recent interest in the idea that SOA can form highly viscous particles where the diffusion of either water or semivolatile organics within the particle is sufficiently hindered to affect evaporation and growth. Despite numerous indirect inferences of viscous behaviour from SOA evaporation or 'bounce' within aerosol instruments, there have been no bulk measurements of the viscosity of well-constrained model aerosol systems of atmospheric significance. Here the viscous behaviour of a well-defined model system of 9 dicarboxylic acids is investigated directly with complimentary measurements and model predictions used to infer phase state. Results not only allow us to discuss the atmospheric implications for SOA formation through this representative mixture, but also the potential impact of current methodologies used for probing this affect in both the laboratory and from a modelling perspective. We show, quantitatively, that the physical state transformation from liquid-like to amorphous semisolid can substantially increase the importance of mass transfer limitations within particles by 7 orders of magnitude for 100 nm diameter particles. Recommendations for future research directions are given.
    No preview · Article · Jul 2014 · Environmental Science and Technology
  • Source

    Full-text · Dataset · Mar 2014
  • David Topping · Mark Barley · Gordon McFiggans
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple approach to calculate liquid-liquid phase separation has been developed based on the derivation of partitioning coefficients between multiple liquid phases and inclusion in a framework used to partition an arbitrary number of compounds between the vapour and particle phases in an atmospheric aerosol. The representation compares favourably with a more complex and expensive benchmark gas-particle thermodynamic model for simple well-constrained systems. The model has then been applied to consider liquid phase separation in multicomponent particles formed by the equilibration of organic products generated by a near-explicit model of VOC oxidation. Inclusion of phase separation decreases the predicted mass of condensed organic material by -10 to -50%, dependent on the concentration of semi-volatile components and ambient conditions in the model scenario. The current study considers only two liquid phases, but the framework can readily accommodate an arbitrary number, though this is beyond the scope of the current work. Uncertainty introduced by the omission of phase separation is far lower than existing uncertainties in pure component vapour pressures, where orders of magnitude differences in predicted mass are found, though the bias introduced when choosing a particular method for estimating the saturation vapour pressure will influence the magnitude of phase separation. The proposed technique is the first to be used to practically deal with the many hundreds or thousands of components present in the ambient atmospheric aerosol.
    No preview · Article · Oct 2013 · Faraday Discussions

  • No preview · Article · Jun 2013
  • Source
    P. J. Connolly · D. O. Topping · F. Malavelle · G. McFiggans
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a parameterisation of aerosol activation, including co-condensation of semi-volatile organics, for warm clouds that has applications in large-scale numerical models. The scheme is based on previously developed parameterisations that are in the literature, but has two main modifications. The first is that the total aerosol mass is modified by the condensation of organic vapours entering cloud-base, whereas the second is that this addition of mass acts to modify the median diameter and the geometric standard deviation of the aerosol size distribution. It is found that the scheme is consistent with parcel model calculations of co-condensation under different regimes. Such a parameterisation may find use in evaluating important feedbacks in climate models.
    Full-text · Article · Jun 2013 · Atmospheric Chemistry and Physics
  • Source
    David Topping · Paul Connolly · Gordon McFiggans
    [Show abstract] [Hide abstract]
    ABSTRACT: Clouds profoundly influence weather and climate. The brightness and lifetime of clouds is determined by cloud droplet number concentration, in turn dictated by the number of available seed particles. The formation of cloud droplets on non-volatile atmospheric particles is well understood. However, fine particulate matter in the atmosphere ranges widely in volatility. Co-condensation of semi-volatile compounds with water increases a particle's propensity for cloud droplet formation, with potential consequences for feedbacks between the terrestrial biosphere and climate. Here we systematically study cloud droplet formation, using a cloud parcel model extended to include co-condensation of semi-volatile organic compounds under a broad variety of realistic conditions. As an air parcel rises and cools, the concentration of organic vapour that it can hold declines. Thus, the simulated organic vapours become increasingly saturated as they ascend, and so condense on growing particles as they swell into cloud droplets. We show that condensation of increasingly volatile material adds to the soluble mass of these droplets and facilitates the uptake of additional water, which leads, in turn, to a substantial increase in the number of viable cloud droplets. We suggest that the co-condensation of semi-volatile organic compounds with water vapour has a substantial impact on the radiative properties of clouds.
    Full-text · Article · Jun 2013 · Nature Geoscience
  • David Owen Topping · Mark Barley · Gordon McFiggins
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple approach to calculate liquid-liquid phase separation has been developed based on the derivation of partitioning coefficients between multiple liquid phases and included in a framework used to partition an arbitrary number of compounds between the vapour and particle phases in an atmospheric aerosol. The representation compares favourably with a more complex and expensive benchmark gas-particle thermodynamic model for simple well constrained sys tems. The model has then been applied to consider liquid phase separation in multicomponent particles formed by the equilibration of organic products generated by a near-explicit model of VOC oxidation. Inclusion of phase separation decreases the predicted mass of condensed organic material by 10 to 50%, dependent on the concentration of semi-volatile components and ambient conditions in the model scenario. The current study considers only two liquid phases, but the framework can readily accommodate an arbitrary number, though this is beyond the scope of the current work. Uncertainty introduced by the omission of phase separation is far lower than existing uncertainties in pure component vapour pressures, where orders of magnitude differences in predicted mass are found, though the bias introduced when choosing a particular method for estimating the saturation vapour pressure will influence the magnitude of phase separation. The proposed technique is the first to be used to practically deal with the many hundreds or thousands of components present in the ambient atmospheric aerosol.
    No preview · Article · May 2013 · Faraday Discussions
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbonyl oxides ("Criegee intermediates"), formed in the ozonolysis of alkenes, are key species in tropospheric oxidation of organic molecules and their decomposition provides a non-photolytic source of OH in the atmosphere (Johnson and Marston, Chem. Soc. Rev., 2008, 37, 699, Harrison et al, Sci, Total Environ., 2006, 360, 5, Gäb et al., Nature, 1985, 316, 535, ref. 1-3). Recently it was shown that small Criegee intermediates, C.I.'s, react far more rapidly with SO2 than typically represented in tropospheric models, (Welz, Science, 2012, 335, 204, ref. 4) which suggested that carbonyl oxides could have a substantial influence on the atmospheric oxidation of SO2. Oxidation of 502 is the main atmospheric source of sulphuric acid (H2SO4), which is a critical contributor to aerosol formation, although questions remain about the fundamental nucleation mechanism (Sipilä et al., Science, 2010, 327, 1243, Metzger et al., Proc. Natl. Acad. Sci. U. S. A., 2010 107, 6646, Kirkby et al., Nature, 2011, 476, 429, ref. 5-7). Non-absorbing atmospheric aerosols, by scattering incoming solar radiation and acting as cloud condensation nuclei, have a cooling effect on climate (Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, Cambridge University Press, 2007, ref. 8). Here we explore the effect of the Criegees on atmospheric chemistry, and demonstrate that ozonolysis of alkenes via the reaction of Criegee intermediates potentially has a large impact on atmospheric sulphuric acid concentrations and consequently the first steps in aerosol production. Reactions of Criegee intermediates with SO2 will compete with and in places dominate over the reaction of OH with SO2 (the only other known gas-phase source of H2SO4) in many areas of the Earth's surface. In the case that the products of Criegee intermediate reactions predominantly result in H2SO4 formation, modelled particle nucleation rates can be substantially increased by the improved experimentally obtained estimates of the rate coefficients of Criegee intermediate reactions. Using both regional and global scale modelling, we show that this enhancement is likely to be highly variable spatially with local hot-spots in e.g. urban outflows. This conclusion is however contingent on a number of remaining uncertainties in Criegee intermediate chemistry.
    No preview · Article · May 2013 · Faraday Discussions
  • Mark Howard Barley · David O Topping · Gordon McFiggans
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to model the properties and chemical composition of secondary organic aerosol (SOA) estimated physical property data for many thousands of organic compounds are required. Seven methods for estimating liquid density are assessed against experimental data for a test set of 56 multifunctional organic compounds. The group contribution method of Schroeder coupled with the Rackett equation using critical properties by Nannoolal was found to give the best liquid density values for this test set. During this work some problems with the representation of certain groups (aromatic amines and phenols) within the critical property estimation methods were identified, highlighting the importance (and difficulties) of deriving the parameters of group contribution methods from good quality experimental data. A selection of the estimation methods are applied to the 2742 compounds of an atmospheric chemistry database which showed that they provided consistent liquid density values for compounds with such atmospherically important (but poorly studied) functional groups as hydroperoxide, peroxide, peroxyacid and PAN. Estimated liquid density values are also presented for a selection of compounds predicted to be important in atmospheric SOA. Hygroscopic growth factor (a property expected to depend on liquid density) has been calculated for a wide range of particle compositions. A low sensitivity of the growth factor to liquid density was found and a single density value of 1350 kg.m$^{-3}$ could be used for all multicomponent SOA in the calculation of growth factors for comparison with experimentally measured values in the laboratory or the field without incurring significant error.
    No preview · Article · Mar 2013 · The Journal of Physical Chemistry A
  • [Show abstract] [Hide abstract]
    ABSTRACT: Knudsen Effusion Mass Spectrometry (KEMS) has been used to measure solid state equilibrium vapour pressures of several multifunctional aromatic compounds; phthalic, isophthalic, terephthalic, para-anisic, ortho-amino benzoic, meta-amino benzoic, para-amino benzoic, vanillic, syringic, 1,2,4-tricarboxylic benzoic, 3,5-dihydroxy-4-methyl benzoic and 4-methyl phthalic acids and nitrocatechol. Sub-cooled liquid vapour pressures were derived using Differential Scanning Calorimetry (DSC) measured thermochemical properties for the compounds measured here, as well as for other substituted benzoic acids using literature values. Unusual trends in the sub-cooled liquid vapour pressure, not represented by currently available vapour pressure estimation methods, are explained using a newly constructed Structure–Activity Relationship (SAR) with a combination of resonance and steric effects. This was then tested against further measurements of ortho-dimethyl amino benzoic and meta-dimethyl amino benzoic acids.
    No preview · Article · May 2012 · RSC Advances
  • Source
    D. O. Topping · G. McFiggans
    [Show abstract] [Hide abstract]
    ABSTRACT: The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936). However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.
    Preview · Article · Apr 2012 · ATMOSPHERIC CHEMISTRY AND PHYSICS
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric aerosols often contain surface active organics. We study the influence of these surfactants on predictions of particle cloud activation potential and aerosol indirect climate effects, by implementing different parametrizations of surfactant effects in the global circulation model ECHAM5.5-HAM2. A parametrization based only on droplet surface tension reduction produces significantly larger effects on predicted cloud droplet numbers than novel parametrizations based on detailed considerations of organic surface activity. It seems better to disregard surfactant effects altogether than employing parametrizations accounting only for effects on surface tension. We strongly recommend not using only the surface tension reduction to represent the surfactant effects in climate models.
    No preview · Article · Mar 2012 · Geophysical Research Letters
  • Source
    M. H. Barley · D. Topping · D. Lowe · S. Utembe · G. McFiggans
    [Show abstract] [Hide abstract]
    ABSTRACT: Calculations of the absorptive partitioning of secondary organic aerosol components were carried out using a number of methods to estimate vapour pressure and non-ideality. The sensitivity of predicted condensed component masses, volatility, O:C ratio, molar mass and functionality distribution to the choice of estimation methods was investigated in mixtures of around 2700 compounds generated by a near explicit mechanism of atmospheric VOC degradation. The sensitivities in terms of all metrics were comparable to those previously reported (using 10 000 semi-randomly generated compounds). In addition, the change in predicted aerosol properties and composition with changing VOC emission scenario was investigated showing key dependencies on relative anthropogenic and biogenic contributions. Finally, the contribution of non-ideality to the changing distribution of condensed components was explored in terms of the shift in effective volatility by virtue of component activity coefficients, clearly demonstrating both enhancement and reduction of component masses associated with negative and positive deviations from ideality.
    Full-text · Article · Dec 2011 · ATMOSPHERIC CHEMISTRY AND PHYSICS
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
    Full-text · Article · Dec 2011 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The primary and secondary contributions to the marine aerosol budget are subject to large uncertainty as are the contributory processes leading to the, often substantial, organic fraction. The resultant impacts on indirect radiative forcing through the effect of aerosol on marine cloud cover are consequently uncertain. Here we report in situ measurements of sub-micron aerosol composition, hygroscopicity and particle size-resolved cloud condensation nucleus behaviour from a number of open ocean and coastal experiments at different times of year. The ability to reconcile the measurements with each other and thereby to explain the aerosol properties in terms of particle size and composition will be discussed. We will attempt to place the ambient measurements in the context of primary seaspray bubbletank experiments to make inferences about the relative primary and secondary contributions to the properties of the ambient aerosol.
    No preview · Article · Dec 2011