E. Hays

NASA, Вашингтон, West Virginia, United States

Are you E. Hays?

Claim your profile

Publications (272)1665.85 Total impact

  • Roopesh Ojha · Elizabeth Hays · Rolf Buehler · Michael Dutka
    [Show abstract] [Hide abstract]
    ABSTRACT: The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed a significant increase in the gamma-ray activity from a source positionally consistent with the Crab Nebula on March 3, 2013. Preliminary LAT analysis indicates that the daily-averaged gamma-ray emission (E >100 MeV) from the direction of the Crab nebula was (8.3 +/- 0.7) x 10^-6 ph cm^-2 s^-1 (statistical errors only) on March 3.
    No preview · Article · Mar 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
    Full-text · Article · Feb 2013 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ∼ 500–550.
    Full-text · Article · Jan 2013 · The Astrophysical Journal
  • Elizabeth Hays
    [Show abstract] [Hide abstract]
    ABSTRACT: Telescopes capable of collecting the highest energy light, called gammaradiation, explore a region of the electromagnetic spectrum that was largelyinaccessible until recently. Observations at the highest energies reveal theexistence and properties of extreme sites in the Universe. In this chapter,I cover the techniques used to detect photons at frequencies above 1023 Hz, photonenergy > 100 MeV,in the so-called pair production regime. Telescopes employing particle and optical detection methods are used in space or the upper atmosphere as well as on the ground. Gamma-ray astrophysics is a young field with only one or two generations of instruments completed for each of several techniques. In the past decade,telescopes throughout this band have generated significantly deeper andmore complete surveys and catalogs of the high- and very-high-energysky. Already the results are spectacular, but many challenges remain forenhancing the performance of high- and very-high-energy gamma-raytelescopes.
    No preview · Article · Jan 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term monitoring of PSR J2021+4026 in the heart of the Cygnus region with the Fermi Large Area Telescope unveiled a sudden decrease in flux above 100 MeV over a timescale shorter than a week. The "jump" was near MJD 55850 (2011 October 16), with the flux decreasing from (8.33 ± 0.08) × 10-10 erg cm-2 s-1 to (6.86 ± 0.13) × 10-10 erg cm-2 s-1. Simultaneously, the frequency spindown rate increased from (7.8 ± 0.1) × 10-13 Hz s-1 to (8.1 ± 0.1) × 10-13 Hz s-1. Significant (>5σ) changes in the pulse profile and marginal (<3σ) changes in the emission spectrum occurred at the same time. There is also evidence for a small, steady flux increase over the 3 yr preceding MJD 55850. This is the first observation at γ-ray energies of mode changes and intermittent behavior, observed at radio wavelengths for other pulsars. We argue that the change in pulsed γ-ray emission is due to a change in emission beaming and we speculate that it is precipitated by a shift in the magnetic field structure, leading to a change of either effective magnetic inclination or effective current.
    Full-text · Article · Jan 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ∼ 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.
    Full-text · Article · Nov 2012 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Millisecond pulsars, old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311−3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
    Full-text · Article · Oct 2012 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Millisecond pulsars, old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
    Full-text · Article · Oct 2012 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.
    Full-text · Article · Oct 2012 · The Astrophysical Journal Supplement Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the detection of high-energy γ-ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmic-ray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F (> ##IMG## [http://ej.iop.org/images/0004-637X/758/2/140/apj445159ieqn1.gif] $100 rm MeV) =(1.04pm 0.01,rm [statistical error]pm 0.1,rm [systematic error])times 10^-6$ cm –2 s –1 . This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory , F (>100 MeV) ##IMG## [http://ej.iop.org/icons/Entities/ap.gif] ≈ 5 × 10 –7 cm –2 s –1 , when solar activity was relatively high. The higher γ-ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of γ-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy γ-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.
    Full-text · Article · Oct 2012 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ☉ yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
    Full-text · Article · Aug 2012 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: In ATEL #4224, we reported the detection by the Fermi Large Area Telescope of Fermi J0639+0548, a new gamma-ray transient in the Galactic plane, beginning on 2012 June 22. The transient was seen through the Monoceros region of our Galaxy with Galactic coordinates, (l, b) = (206.42 deg, 0.03 deg). We noted the gamma-ray source was close to the Sun at the time of detection, thus precluding prompt follow-up with Swift (and also ground-based optical observers).
    No preview · Article · Aug 2012
  • Roopesh Ojha · Rolf Buehler · Elizabeth Hays · Michael Dutka
    [Show abstract] [Hide abstract]
    ABSTRACT: The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed a significant increase in the gamma-ray activity from a source positionally consistent with the Crab Nebula on July 3, 2012. Preliminary LAT analysis indicates that the daily-averaged gamma-ray emission (E >100 MeV) from the direction of the Crab doubled from (2.4 +/- 0.5) x 10^-6 ph/cm2/sec (statistical errors only) on July 2nd to (5.5 +/- 0.7) x 10^-6 ph/cm2/sec on July 3rd, a factor of 2 greater than the average flux of (2.75 +/- 0.10) x 10^-6 ph/cm2/sec reported in the second Fermi LAT catalog (2FGL, Nolan et al.
    No preview · Article · Jul 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: On 2008 March 19, one of the brightest gamma-ray bursts (GRBs) ever recorded was detected by several ground- and space-based instruments spanning the electromagnetic spectrum from radio to gamma rays. With a peak visual magnitude of 5.3, GRB 080319B was dubbed the "naked-eye" GRB, as an observer under dark skies could have seen the burst without the aid of an instrument. Presented here are results from observations of the prompt phase of GRB 080319B taken with the Milagro TeV observatory. The burst was observed at an elevation angle of 47°. Analysis of the data is performed using both the standard air shower method and the scaler or single-particle technique, which results in a sensitive energy range that extends from ~5 GeV to >20 TeV. These observations provide the only direct constraints on the properties of the high-energy gamma-ray emission from GRB 080319B at these energies. No evidence for emission is found in the Milagro data, and upper limits on the gamma-ray flux above 10 GeV are derived. The limits on emission between ~25 and 200 GeV are incompatible with the synchrotron self-Compton model of gamma-ray production and disfavor a corresponding range (2 eV-16 eV) of assumed synchrotron peak energies. This indicates that the optical photons and soft (~650 keV) gamma rays may not be produced by the same electron population.
    Full-text · Article · Jun 2012 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of γ-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit γ rays, 630 of these sources are "unassociated" (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary γ-ray characteristics for these unassociated sources in an effort to correlate their γ-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source "classifications" appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to "probable source classes" for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in ~80% of the sources.
    Full-text · Article · Jun 2012 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the \textit{Fermi Gamma-ray Space Telescope} (\textit{Fermi}). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative $P$-values $\lesssim0.05$ accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of $\log(L_{0.1-100 \rm{GeV}}/L_{1.4 \rm{GHz}}) = 1.7 \pm 0.1_{\rm (statistical)} \pm 0.2_{\rm (dispersion)}$ and $\log(L_{0.1-100 \rm{GeV}}/L_{8-1000 \mu\rm{m}}) = -4.3 \pm 0.1_{\rm (statistical)} \pm 0.2_{\rm (dispersion)}$ for a galaxy with a star formation rate of 1 $M_{\odot}$ yr$^{-1}$, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts $0<z<2.5$ above 0.1 GeV is estimated to be 0.4-2.4 $\times 10^{-6}$ ph cm$^{-2}$ s$^{-1}$ sr$^{-1}$ (4-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that $\sim10$ galaxies could be detected by their cosmic-ray induced gamma-ray emission during a 10-year \textit{Fermi} mission.
    Full-text · Article · Jun 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has detected a transient gamma-ray source in the Galactic Plane starting on 2012 Jun 22. Using data from Jun 18.0 - 26.4, the preliminary LAT position is (J2000.0): RA = 99.91 deg, Dec = 5.81 deg, (l, b = 206.42 deg, 0.03 deg) with a 68% confidence error circle radius 0.12 deg (statistical uncertainty only). Preliminary analysis of the Fermi-LAT data indicates that the source was detected on three consecutive days (2012 Jun 22-24) with significances of ~5 sigma, and fluxes (E >100 MeV) of (1.0 +/- 0.4) x 10^-6 ph cm^-2 s^-1 to (1.5 +/- 0.5) x 10^-6 ph cm^-2 s^-1 (statistical uncertainties only).
    No preview · Article · Jun 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gamma-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi-LAT mission and compare with models of the diffuse gamma-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the Xco-factor, the ratio between integrated CO-line intensity and molecular hydrogen column density, the fluxes and spectra of the gamma-ray point sources from the first Fermi-LAT catalogue, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as gamma rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but under-predict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point source populations and spectral variations of cosmic rays throughout the Galaxy.
    Full-text · Article · Apr 2012 · The Astrophysical Journal

  • No preview · Article · Apr 2012 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.
    Full-text · Article · Mar 2012 · The Astrophysical Journal Supplement Series

Publication Stats

13k Citations
1,665.85 Total Impact Points

Institutions

  • 2008-2015
    • NASA
      Вашингтон, West Virginia, United States
    • University of Leeds
      • School of Physics and Astronomy
      Leeds, England, United Kingdom
  • 2009-2014
    • Stanford University
      • Department of Physics
      Stanford, California, United States
    • Laboratoire Leprince-Ringuet
      Paliseau, Île-de-France, France
    • Agenzia Spaziale Italiana
      Roma, Latium, Italy
    • Universidad Nacional Autónoma de México
      • Institute of Astronomy
      Ciudad de México, The Federal District, Mexico
    • Argonne National Laboratory
      Лимонт, Illinois, United States
  • 2013
    • INFN - Istituto Nazionale di Fisica Nucleare
      Frascati, Latium, Italy
  • 2011
    • Università degli Studi di Perugia
      • Department of Physics
      Perugia, Umbria, Italy
    • The Ohio State University
      • Department of Physics
      Columbus, Ohio, United States
  • 2006-2011
    • University of Chicago
      • Enrico Fermi Institute
      Chicago, Illinois, United States
  • 2010
    • Politecnico di Bari
      Bari, Apulia, Italy
  • 2009-2010
    • McGill University
      • Department of Physics
      Montréal, Quebec, Canada
  • 2003-2010
    • University of Maryland, College Park
      • • Department of Astronomy
      • • Department of Physics
      Maryland, United States