Yosuke Minowa

Osaka University, Suika, Ōsaka, Japan

Are you Yosuke Minowa?

Claim your profile

Publications (98)167.6 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear star clusters (NSCs) at the dynamical center of galaxies appear to have a complex star formation history. This suggests repeated star formation even in the influence of the strong tidal field from supermassive black holes. In our previous study, we have detected 31 so far unknown early-type star candidates throughout the Galactic NSC (at 0.5 - 3 pc from Sgr A*; Nishiyama and Schoedel 2013). The aim of this study is a confirmation of the spectral type for the candidates. We have carried out NIR spectroscopic observations of the candidates using Subaru/IRCS/AO188/LGS. K-band spectra for 20 out of the 31 candidates were obtained. By determining an equivalent width, EW(CO), of the 12CO absorption feature at 2.294 um, we have derived an effective temperature and a bolometric magnitude for each candidate, and then constructed an HR diagram. No young (~ Myr), massive stars are included in the 20 candidates we observed; however, 13 candidates are most likely intermediate-age giants (50 - 500 Myr). Two other sources have ages of ~1 Gyr, and the remaining five sources are old (> 1 Gyr), late-type giants. Although none of the early-type star candidates from our previous narrow-band imaging observations can be confirmed as a young star, we find that the photometric technique is sensitive to distinguish old, late-type giants from young and intermediate-age populations. The intermediate-age stars could be so far unknown members of a population formed in a starburst ~100 Myr ago. Finding no young (~ a few Myr) stars at R = 0.5 - 3 pc favors the in-situ formation scenario for the presence of the young stars at R < 0.5 pc. Furthermore, the different spatial distributions of the young and the intermediate-age stars imply that the Galactic NSC is an aggregate of stars born in different places and under different physical conditions.
    Preview · Article · Nov 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 lambda/D. Non-common path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.
    Full-text · Article · Jun 2015 · Publications of the Astronomical Society of the Pacific
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 26 gravitationally lensed quasars (24 doubles, 1 quad, and 1 possible triple) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in 5 systems, without a-priory knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity > 0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time-delays in order to infer the Hubble constant.
    No preview · Article · Jun 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the physical properties of [OIII] emission line galaxies at z>3 as the tracers of active galaxies at 1Gyr before the peak epoch at z~2. We have performed deep narrow-band imaging surveys in the Subaru/XMM-Newton Deep Survey Field with MOIRCS on the Subaru Telescope and have constructed coherent samples of 34 [OIII] emitters at z=3.2 and 3.6, as well as 107 H$\alpha$ emitters at z=2.2 and 2.5. We investigate their basic physical quantities, such as stellar masses, star formation rates (SFRs), and sizes using the publicly available multi-wavelength data and high resolution images by the Hubble Space Telescope. The stellar masses and SFRs show a clear correlation known as the "main sequence" of star-forming galaxies. It is found that the location of the main sequence of the [OIII] emitters at z=3.2 and 3.6 is almost identical to that of the H$\alpha$ emitters at z=2.2 and 2.5. Also, we investigate their mass-size relation and find that the relation does not change between the two epochs. When we assume that the star-forming galaxies at z=3.2 grow simply along the same main sequence down to z=2.2, galaxies with $M_* = 10^{9}$-$10^{11} M_{\odot}$ increase their stellar masses significantly by a factor of 10-2. They climb up the main sequence, and their star formation rates also increase a lot as their stellar masses grow. This indicates that star formation activities of galaxies are accelerated from z>3 towards the peak epoch of galaxy formation at z~2.
    No preview · Article · May 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate the arbitrary control of the carrier-envelope phase of intense few-cycle THz pulses by using a simple passive component with high transmission efficiency based on a parallel metal plate waveguide. In this component, the carrier-envelope phase is altered by using the difference between the group and phase velocities. We demonstrate pulseshape- dependent nonlinear spectroscopy using these passive optics for Ge:Sb, where strong transitions between the shallow acceptor levels are located at 2.0 THz.
    No preview · Article · Mar 2015 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrated an achromatic wave plate based on parallel metal plate waveguides in the high THz frequency region. The metal plates have periodic rough structures on the surface, which allow slow transverse magnetic wave propagation and fast transverse electric wave propagation. A numerical simulation showed that the height of the periodic roughness is important for optimizing the birefringence. We fabricated stacked metal plates containing two types of structures by chemical etching. An array of small pillars on the metal plates allows higher frequency optimization. We experimentally demonstrated an achromatic quarter-wave plate in the frequency region from 2.0 to 3.1 THz.
    No preview · Article · Feb 2015 · Optics Express
  • [Show abstract] [Hide abstract]
    ABSTRACT: We fabricated single-crystalline microspheres of wide-gap semiconductors with anisotropic crystal structures, such as ZnO and ZnSe, by laser ablation in superfluid helium and investigated their lasing properties. Whispering gallery mode lasing at their band edges in ultraviolet region was clearly observed under the optical excitation, reflecting their high sphericity and crystal quality.
    No preview · Article · Jan 2015 · MRS Online Proceeding Library
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a simple achromatic terahertz wave plate composed of stacked parallel metal plates with a hole array. It consists of an ensemble of designed parallel plate waveguides; the high and low propagation speeds of waves in TE and TM waveguide modes with the same group velocity cause a constant phase difference over a wide frequency region. Using that wave plate, we obtained intense single- and multi-cycle THz pulses with circular polarization.
    No preview · Article · Nov 2014 · Optics Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: We successfully fabricated semiconductor microspheres of ZnO, ZnSe, etc., by laser ablation in superfluid helium and investigated their morphology and optical properties. Time-resolved photoluminescence spectroscopy in ultraviolet region of single ZnO microspheres shows luminescence spectra with mode structures and remarkable reduction of the luminescence decay time compared to that of polycrystals or non-spherical microparticles. This indicates strong light-matter interaction due to efficient light-confinement in the ZnO microspheres. In addition, the fabricated ZnSe microspheres also show the photoluminescence spectra with typical mode structures indicating their high sphericity.
    No preview · Article · Nov 2014 · MRS Online Proceeding Library
  • Source
    Yosuke Minowa · Ryoichi Kawai · Masaaki Ashida
    [Show abstract] [Hide abstract]
    ABSTRACT: Semiconductor nanocrystals, also known as quantum dots (QDs), are key ingredients in current quantum optics experiments. They serve as quantum emitters and memories and have tunable energy levels that depend not only on the material but also, through the quantum confinement effect, on the size. The resulting strongly confined electron and hole wave functions lead to large transition dipole moments, which opens a path to ultra strong coupling and even deep strong coupling between light and matter. Such efficient coupling requires the precise positioning of the QD in an optical cavity with a high quality factor and small mode volume, such as micro-Fabry--Perot cavity, whispering-gallery-mode microcavity, or photonic-crystal cavity. However, the absence of a technique for free-space positioning has limited the further research on QD-based cavity quantum electrodynamics. In this paper, we present a technique to overcome this challenge by demonstrating the optical levitation or trapping in helium gas of a single QD within a liquid droplet. Bright single-photon emission from the levitated QD was observed for more than 200 s. To the best of our best knowledge, this study provides the first proof-of-principle demonstration of an optically levitated solid-state quantum emitter.
    Full-text · Article · Aug 2014 · Optics Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope’s ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.
    No preview · Conference Paper · Aug 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: A future plan for the next-generation Subaru adaptive optics, is a system based on an adaptive secondary mirror. A ground-layer adaptive optics combined with a new wide-field multi-object infrared camera and spectrograph will be a main application of the adaptive secondary mirror. A preliminary simulation results show that the resolution achieved by the ground-layer adaptive optics is expected to be better than 0.2 arcsecond in the K-band over 15 arcminutes field-of-view. In this paper, the performance simulation is updated taking dependence on observation conditions, the zenith angle and the season, into account.
    No preview · Conference Paper · Aug 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the result of Subaru Telescope multiband adaptive optics observations of the complex gravitationally lensed quasar SDSS J1405+0959, which is produced by two lensing galaxies. These observations reveal dramatically enhanced morphological detail, leading to the discovery of an additional object 0.26 arcsec from the secondary lensing galaxy, as well as three collinear clumps located in between the two lensing galaxies. The new object is likely to be the third quasar image, although the possibility that it is a galaxy cannot be entirely excluded. If confirmed via future observations, it would be the first three-image lensed quasar produced by two galaxy lenses. In either case, we show based on gravitational lensing models and photometric redshift that the collinear clumps represent merging images of a portion of the quasar host galaxy, with a magnification factor of ∼ 15-20, depending on the model.
    Full-text · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: The project, "ULTIMATE- SUBARU", stands for "Ultra-wide Laser Tomographic Imager and MOS with AO for Transcendent Exploration at SUBARU Telescope." ULTIMATE-SUBARU provides a wide-field near infrared instrument at Cassegrain focus with GLAO. Performance simulation of GLAO at Subaru Telescope indicates that uniform PSFs can be obtained across the field of view up to 20 arcmin in diameter. This paper describes a current status of ULTIMATE-SUBARU project, science objectives, performance simulation update, system overview, feasibility of adaptive secondary mirror, and laser system.
    No preview · Conference Paper · Jul 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is one of a handful of extreme adaptive optics systems set to come online in 2014. The extreme adaptive optics correction is realized by a combination of precise wavefront sensing via a non-modulated pyramid wavefront sensor and a 2000 element deformable mirror. This system has recently begun on-sky commissioning and was operated in closed loop for several minutes at a time with a loop speed of 800 Hz, on ~150 modes. Further suppression of quasi-static speckles is possible via a process called "speckle nulling" which can create a dark hole in a portion of the frame allowing for an enhancement in contrast, and has been successfully tested on-sky. In addition to the wavefront correction there are a suite of coronagraphs on board to null out the host star which include the phase induced amplitude apodization (PIAA), the vector vortex, 8 octant phase mask, 4 quadrant phase mask and shaped pupil versions which operate in the NIR (y-K bands). The PIAA and vector vortex will allow for high contrast imaging down to an angular separation of 1 λ/D to be reached; a factor of 3 closer in than other extreme AO systems. Making use of the left over visible light not used by the wavefront sensor is VAMPIRES and FIRST. These modules are based on aperture masking interferometry and allow for sub-diffraction limited imaging with moderate contrasts of ~100-1000:1. Both modules have undergone initial testing on-sky and are set to be fully commissioned by the end of 2014.
    No preview · Conference Paper · Jul 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have discovered that Europa, Ganymede and Callisto are bright around 1.5 {\mu}m even when not directly lit by sunlight, based on observations from the Hubble Space Telescope and the Subaru Telescope. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was $10^{-6}$-$10^{-7}$ of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 {\mu}m, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 {\mu}m by the Spitzer Space Telescope but it was not detected, suggesting a significant wavelength dependence. The reason why they are luminous even when in the Jovian shadow is still unknown, but forward-scattered sunlight by haze in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us a new technique to investigate Jovian atmospheric composition, and investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.
    Full-text · Article · May 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We searched for star formation activity associated with high-z damped Lyα systems (DLAs) with the Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyα emission lines of targeted DLA absorbers at 3 < z < 4.5. We detected one apparent NB-excess object located 3.80 arcsec ({\sim }28\ h_{70}^{-1} kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyα emission at z em = 3.115 ± 0.003, which perfectly matches the sub-DLA trough at z abs = 3.1150 with logN(H I)/cm–2 = 20.05. The Lyα luminosity is estimated to be L Lyα = 1.07 × 1042 erg s–1, which corresponds to a star formation rate of 0.97 M ☉ yr–1. Interestingly, the detected Lyα emission is spatially extended with a sharp peak. The large extent of the Lyα emission is remarkably one-sided toward the quasar line-of-sight and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of H I clouds in the circumgalactic medium. This large Lyα extension, which is similar to those found in Rauch et al., could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan.
    No preview · Article · Jan 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We searched for star formation activity associated with high-z Damped Lyman-alpha systems (DLAs) with Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyman-alpha emission lines of targeted DLA absorbers at 3<z<4.5. We detected one apparent NB-excess object located 3.80 arcsec (~28kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyman-alpha emission at z_em=3.115+/-0.003, which perfectly matches the sub-DLA trough at z_abs=3.1150 with logN(HI)/cm^-2=20.05. The Lyman-alpha luminosity is estimated to be L(LyA)=1.07x10^42 erg s^-1, which corresponds to a star formation rate of 0.97 M_\odot yr^-1. Interestingly, the detected Lyman-alpha emission is spatially extended with a sharp peak. The large extent of the Lyman-alpha emission is remarkably one-sided toward the quasar line-of-sight, and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of HI clouds in the circumgalactic medium. This large Lyman-alpha extension, which is similar to those found in Rauch et al. (2008), could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA.
    Full-text · Article · Nov 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supernovae (SNe) have been proposed to be the main production sites of dust grains in the universe. However, our knowledge of their importance to dust production is limited by observationally poor constraints on the nature and amount of dust particles produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova 2010jl around one and a half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ~1350-1450 K at this epoch. The mass of the dust grains is derived to be ~(7.5-8.5) × 10–4M ☉. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate of the typical size of the newly formed dust grains ( 0.1 μm, and most likely 0.01 μm). We believe the dust grains were formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ~10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density must be 3 × 107 cm–3, corresponding to a mass loss rate of 0.02 M ☉ yr–1 (for a mass loss wind velocity of ~100 km s–1). This strongly supports a scenario in which SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous-Blue-Variable-like eruptions within the last century before the explosion.
    Full-text · Article · Aug 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonlinear transmission spectroscopy was performed on a doped Ge:Ga semiconductor using intense THz pulses with different cycle numbers. When single-cycle pulses were used, non-perturbative phenomena, such as the ionization of shallow impurities, competed with the conventional coherent transition, whereas the coherent transition was dominant when multi-cycle pulses were used.
    Full-text · Article · Jun 2013 · New Journal of Physics

Publication Stats

683 Citations
167.60 Total Impact Points

Institutions

  • 2012-2015
    • Osaka University
      • Graduate School of Engineering Sciences
      Suika, Ōsaka, Japan
  • 2014
    • Hokkaido University
      • Department of Cosmosciences
      Sapporo, Hokkaidō, Japan
    • The Graduate University for Advanced Studies
      • Department of Astronomical Science
      Миура, Kanagawa, Japan
  • 2011
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 2008-2011
    • Kyoto University
      • Department of Physics II
      Kioto, Kyōto, Japan
  • 2002-2010
    • National Astronomical Observatory of Japan
      • Division of Optical and Infrared Astronomy
      Edo, Tōkyō, Japan
  • 2003-2007
    • The University of Tokyo
      • Department of Astronomy
      Edo, Tōkyō, Japan