Publications (5)6.3 Total impact
 [Show abstract] [Hide abstract]
ABSTRACT: We discuss the atom–atom scattering problem across a Feshbach resonance in a twodimensional dilute Bose gas at zero temperature, in the limit where the swave scattering length exceeds the width of the vertical confinement. We determine a tunable couplingstrength parameter and by controlling it we evaluate how the condensate wave function spreads out with increasing atom–atom repulsions. We also discuss the stability of the condensate in the magneticfield regime where the coupling has become attractive.  [Show abstract] [Hide abstract]
ABSTRACT: This report is based on my incomplete Phd thesis. The final part of the work on the 2D Yukawa bosons/vortices in a confined geometry is not complete and subject to futher development.  [Show abstract] [Hide abstract]
ABSTRACT: A system of N bosons in a twodimensional harmonic trap is considered. The system is treated in term of the slave boson representation for hardcore bosons which is valid in the arbitrary density regimes. I discuss the consequences of higher order interactions on the density profiles by mapping the slave boson equation to the known KohnSham type equation within the density functional scheme. Comment: 12 pages, 3 figures. Submitted to J. Phys. B : At. mol. opt. phys  [Show abstract] [Hide abstract]
ABSTRACT: We evaluate the thermodynamic critical angular velocity Ωc(T) for creation of a vortex of lowest quantized angular momentum in a strictly twodimensional Bose gas at temperature T, using a meanfield twofluid model for the condensate and the thermal cloud. Our results show that (i) a Thomas–Fermi description of the condensate badly fails in predicting the particle density profiles and the energy of the vortex as functions of T; and (ii) an extrapolation of a simple Thomas–Fermi formula for Ωc(0) is nevertheless approximately useful up to T≃0.5Tc.  [Show abstract] [Hide abstract]
ABSTRACT: We study a Bosecondensed gas at finite temperature, in which the particles of the condensate and of the thermal cloud are constrained to move in a plane under radial harmonic confinement and interact via strictly twodimensional collisions. The coupling parameters are obtained from a calculation of the manybody Tmatrix and decreases as temperature increases through a dependence on the chemical potential and on the occupancy of excited states. We discuss the consequences on the condensate fraction and on the density profiles of the condensed and thermal components as functions of temperature, within a simplified form of the twofluid model. Comment: 12 pages, 4 figures
Publication Stats
14  Citations  
6.30  Total Impact Points  
Top Journals
Institutions

20032005

Scuola Normale Superiore di Pisa
 Laboratory NEST: National Enterprise for NanoScience and NanoTechnology
Pisa, Tuscany, Italy
