Zhuying Wang

Columbia University, New York City, NY, United States

Are you Zhuying Wang?

Claim your profile

Publications (2)5.92 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegeneration and dementia caused by human immunodeficiency virus type 1 (HIV-1) infection of the brain are common complications of acquired immunodeficiency syndrome (AIDS). Introduction of highly active antiretroviral therapy (HAART) reduced the incidence of HIV-1-associated dementia, but so far had no effect on the high frequency of milder neurological disorders caused by HIV-1. This indicates that some neuropathogenic processes persist during limited HIV-1 replication in the central nervous system (CNS). The authors are evaluating the hypothesis that interaction of HIV-1 with astrocytes, which bind HIV-1 but support limited productive HIV-1 infection, may contribute to these processes by disrupting astrocyte functions that are important for neuronal activity or survival. Using laser-capture microdissection on brain tissue samples from HIV-1-infected individuals, we found that HIV-1 DNA can be detected in up to 1% of cortical and basal ganglia astrocytes, thus confirming HIV-1 infection in astrocytes from symptomatic patients. Using rapid subtraction hybridization, the authors cloned and identified 25 messenger RNAs in primary human fetal astrocytes either up-regulated or down-regulated by native HIV-1 infection or exposure to gp120 in vitro. Extending this approach to gene microarray analysis using Affymetrix U133A/B gene chips, the authors determined that HIV-1 alters globally and significantly the overall program of gene expression in astrocytes, including changes in transcripts coding for cytokines, G-coupled protein receptors, transcription factors, and others. Focusing on a specific astrocyte function relevant to neuropathogenesis, the authors showed that exposure of astrocytes to HIV-1 or gp120 in vitro impairs the ability of the cells to transport L-glutamate and the authors related this defect to transcriptional inhibition of the EAAT2 glutamate transporter gene. These findings define new pathways through which HIV-1 may contribute to neuropathogenesis under conditions of limited virus replication in the brain.
    No preview · Article · Feb 2004 · Journal of NeuroVirology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V(max) for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-alpha (TNF-alpha) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-alpha production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease.
    Full-text · Article · Aug 2003 · Virology