Beth A. Biller

The University of Edinburgh, Edinburgh, Scotland, United Kingdom

Are you Beth A. Biller?

Claim your profile

Publications (61)230.96 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly-imaged exoplanets were all L-type. Recently, Kuzuhara et al. (2013) announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ~500 K temperature that bridges the gap between the first directly imaged planets (~1000 K) and our own Solar System's Jupiter (~130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 microns), spanning the red end of the broad methane fundamental absorption feature (3.3 microns) as part of the LEECH exoplanet imaging survey. By comparing our new photometry and literature photometry to a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well-fit by models with the following parameters: T_eff=544+/-10 K, g<600 m/s^2, [M/H]=0.60+/-0.12, cloud opacity parameter of f_sed=2-5, R=0.96+/-0.07 R_Jup, and log(L)=-6.13+/-0.03 L_Sun, implying a hot start mass of 3-30 M_jup for a conservative age range of 0.1-6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a super-stellar metallicity. Since planet formation can create objects with non-stellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.
    No preview · Article · Nov 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: While more and more long-period giant planets are discovered by direct imaging, the distribution of planets at these separations (≳5 AU) has remained largely uncertain, especially compared to planets in the inner regions of solar systems probed by RV and transit techniques. The low frequency, the detection challenges, and heterogeneous samples make determining the mass and orbit distributions of directly imaged planets at the end of a survey difficult. By utilizing Monte Carlo methods that incorporate the age, distance, and spectral type of each target, we can use all stars in the survey, not just those with detected planets, to learn about the underlying population. We have produced upper limits and direct measurements of the frequency of these planets with the most recent generation of direct imaging surveys. The Gemini NICI Planet-Finding Campaign observed 220 young, nearby stars at a median H-band contrast of 14.5 magnitudes at 1”, representing the largest, deepest search for exoplanets by the completion of the survey. The Gemini Planet Imager Exoplanet Survey is in the process of surveying 600 stars, pushing these contrasts to a few tenths of an arcsecond from the star. With the advent of large surveys (many hundreds of stars) using advanced planet-imagers we gain the ability to move beyond measuring the frequency of wide-separation giant planets and to simultaneously determine the distribution as a function of planet mass, semi-major axis, and stellar mass, and so directly test models of planet formation and evolution.
    No preview · Article · Nov 2015 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of our ongoing NTT SoFI survey for variability in young free-floating planets and low mass brown dwarfs, we detect significant variability in the young, free-floating planetary mass object PSO J318.5-22, likely due to rotational modulation of inhomogeneous cloud cover. A member of the 23$\pm$3 Myr $\beta$ Pic moving group, PSO J318.5-22 has T$_\mathrm{eff}$ = 1160$^{+30}_{-40}$ K and a mass estimate of 8.3$\pm$0.5 M$_{Jup}$ for a 23$\pm$3 Myr age. PSO J318.5-22 is intermediate in mass between 51 Eri b and $\beta$ Pic b, the two known exoplanet companions in the $\beta$ Pic moving group. With variability amplitudes from 7-10$\%$ in J$_{S}$ at two separate epochs over 3-5 hour observations, we constrain the rotational period of this object to $>$5 hours. In K$_{S}$, we marginally detect a variability trend of up to 3$\%$ over a 3 hour observation. This is the first detection of weather on an extrasolar planetary mass object. Among L dwarfs surveyed at high-photometric precision ($<$3$\%$) this is the highest amplitude variability detection. Given the low surface gravity of this object, the high amplitude preliminarily suggests that such objects may be more variable than their high mass counterparts, although observations of a larger sample is necessary to confirm this. Measuring similar variability for directly imaged planetary companions is possible with instruments such as SPHERE and GPI and will provide important constraints on formation. Measuring variability at multiple wavelengths can help constrain cloud structure.
    Preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. Our H, K$_s$, and L'-band observations resolve the system at angular separations <0.09". The components exhibit significant orbital motion over a span of ~7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0$\pm$0.5 primary and K6.5$\pm$0.5 secondary are 0.83$\pm$0.02 M$_{\odot}$ and 0.64$\pm$0.02 M$_{\odot}$, respectively. We also derive a system distance of d = 25.87$\pm$0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ~500 Myr old Ursa Major moving group and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits.
    No preview · Article · Oct 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: The re-emergence of the 0.99 $\mu$m FeH feature in brown dwarfs of early- to mid-T spectral type has been suggested as evidence for cloud disruption where flux from deep, hot regions below the Fe cloud deck can emerge. The same mechanism could account for color changes at the L/T transition and photometric variability. We present the first observations of spectroscopic variability of brown dwarfs covering the 0.99 $\mu$m FeH feature. We observed the spatially resolved very nearby brown dwarf binary WISE J104915.57-531906.1 (Luhman 16AB), a late-L and early-T dwarf, with HST/WFC3 in the G102 grism at 0.8-1.15 $\mu$m. We find significant variability at all wavelengths for both brown dwarfs, with peak-to-valley amplitudes of 9.3% for Luhman 16B and 4.5% for Luhman 16A. This represents the first unambiguous detection of variability in Luhman 16A. We estimate a rotational period between 4.5 and 5.5 h, very similar to Luhman 16B. Variability in both components complicates the interpretation of spatially unresolved observations. The probability for finding large amplitude variability in any two brown dwarfs is less than 10%. Our finding may suggest that a common but yet unknown feature of the binary is important for the occurrence of variability. For both objects, the amplitude is nearly constant at all wavelengths except in the deep K I feature below 0.84 $\mu$m. No variations are seen across the 0.99 $\mu$m FeH feature. The observations lend strong further support to cloud height variations rather than holes in the silicate clouds, but cannot fully rule out holes in the iron clouds. We re-evaluate the diagnostic potential of the FeH feature as a tracer of cloud patchiness.
    No preview · Article · Sep 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7-M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8-120 Myr) in the literature. The inferred masses of the companions (~10-100 Mjup) are highly sensitive to the ages of the primary stars so we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. 2MASS J02155892-0929121 C is a new M7 substellar companion (40-60 Mjup) with clear spectroscopic signs of low gravity and hence youth. The primary, possibly a member of the ~40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (<100 AU) configuration. In addition, Li 1 $\lambda$6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (<200 Myr) and resides below the hydrogen burning limit. Three new close-separation (<1") companions (2MASS J06475229-2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (>1 Gyr) tidally-locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest-known member of the Pleiades. [Abridged]
    Preview · Article · May 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here the highest resolution near-IR imaging to date of the HD 141569A disc taken as part of the NICI Science Campaign. We recover 4 main features in the NICI images of the HD 141569 disc discovered in previous HST imaging: 1) an inner ring / spiral feature. Once deprojected, this feature does not appear circular. 2) an outer ring which is considerably brighter on the western side compared to the eastern side, but looks fairly circular in the deprojected image. 3) an additional arc-like feature between the inner and outer ring only evident on the east side. In the deprojected image, this feature appears to complete the circle of the west side inner ring and 4) an evacuated cavity from 175 AU inwards. Compared to the previous HST imaging with relatively large coronagraphic inner working angles (IWA), the NICI coronagraph allows imaging down to an IWA of 0.3". Thus, the inner edge of the inner ring/spiral feature is well resolved and we do not find any additional disc structures within 175 AU. We note some additional asymmetries in this system. Specifically, while the outer ring structure looks circular in this deprojection, the inner bright ring looks rather elliptical. This suggests that a single deprojection angle is not appropriate for this system and that there may be an offset in inclination between the two ring / spiral features. We find an offset of 4+-2 AU between the inner ring and the star center, potentially pointing to unseen inner companions.
    Full-text · Article · Apr 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new algorithm designed to improve the signal to noise ratio (SNR) of point and extended source detections in direct imaging data. The novel part of our method is that it finds the linear combination of the science images that best match counterpart images with signal removed from suspected source regions. The algorithm, based on the Locally Optimized Combination of Images (LOCI) method, is called Matched LOCI or MLOCI. We show using data obtained with the Gemini Planet Imager (GPI) and Near-Infrared Coronagraphic Imager (NICI) that the new algorithm can improve the SNR of point source detections by 30{400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. While non-blind applications may yield linear combinations of science images which seem to increase the SNR of true sources by a factor >2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to re-detect point sources found in previous epochs. Our findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g. LOCI and Principal Component Analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques.
    Full-text · Article · Feb 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the astrometric calibration of the Gemini NICI Planet-Finding Campaign. The Campaign requires a relative astrometric accuracy of $\approx$ 20 mas across multi-year timescales in order to distinguish true companions from background stars by verifying common proper motion and parallax with their parent stars. The calibration consists of a correction for instrumental optical image distortion, plus on-sky imaging of astrometric fields to determine the pixel scale and image orientation. We achieve an accuracy of $\lesssim 7$ mas between the center and edge of the 18$''$ NICI field, meeting the 20 mas requirement. Most of the Campaign data in the Gemini Science Archive are accurate to this level but we identify a number of anomalies and present methods to correct the errors.
    Full-text · Article · Nov 2014 · Publications of the Astronomical Society of the Pacific
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WISE J085510.83-071442.5 (hereafter, WISE 0855-07) is the coolest Y dwarf known to date and is located at a distance of 2.31$\pm 0.08$ pc, giving it the fourth largest parallax of any known star or brown dwarf system. We report deep $z$-band observations of WISE 0855-07 using FORS2 on UT1/VLT. We do not detect any counterpart to WISE 0855-07 in our $z$-band images and estimate a brightness upper limit of AB mag $>$ 24.8 ($F_{\nu}$ $<$ 0.45 $\mu$Jy) at 910 $\pm$ 65 nm with $3\sigma$-confidence. We combine our z-band upper limit with previous near- and mid-infrared photometry to place constraints on the atmospheric properties of WISE 0855-07 via comparison to models which implement water clouds in the atmospheres of $T_{eff} < 300$ K substellar objects. We find that none of the available models that implement water clouds can completely reproduce the observed SED of WISE 0855-07. Every model significantly disagrees with the (3.6 $\mu$m / 4.5 $\mu$m) flux ratio and at least one other bandpass. Since methane is predicted to be the dominant absorber at 3-4 $\mu$m, these mismatches might point to an incorrect or incomplete treatment of methane in current models. We conclude that \mbox{(a) WISE0855-07} has $T_{eff} \sim 200-250$~K, (b) $< 80 \%$ of its surface is covered by clouds, and (c) deeper observations, and improved models of substellar evolution, atmospheres, clouds, and opacities will be necessary to better characterize this object.
    Full-text · Article · Oct 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of a faint pointlike feature possibly related to ongoing planet-formation in the disk of the transition disk star HD 169142. The pointlike feature has a $\Delta$mag(L)$\sim$6.4, at a separation of $\sim$0.11" and PA$\sim$0$^{\circ}$. Given its lack of an H or K$_{S}$ counterpart despite its relative brightness, this candidate cannot be explained by purely photospheric emission and must be a disk feature heated by an as yet unknown source. Its extremely red colors make it highly unlikely to be a background object, but future multi-wavelength followup is necessary for confirmation and characterization of this feature.
    Full-text · Article · Aug 2014 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $\sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 $\mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $\mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($\sim$0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$\mu$m in preparation for JWST.
    Full-text · Article · Jul 2014 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (~1.5-2.5 M⊙) conducted to date and includes the planet hosts β Pic and Fomalhaut. Despite detecting two new brown dwarfs, our observations did not detect new planets around our target stars, and we present upper limits on the fraction of high-mass stars that can host giant planets that are consistent with our null result.
    No preview · Article · Jun 2014 · Proceedings of the International Astronomical Union
  • Beth Biller
    [Show abstract] [Hide abstract]
    ABSTRACT: The last decade has yielded the first images of exoplanets, considerably advancing our understanding of the properties of young giant planets. In this talk I will discuss current results from ongoing direct imaging efforts as well as future prospects for detection and characterization of exoplanets via high contrast imaging. Direct detection, and direct spectroscopy in particular, have great potential for advancing our understanding of extrasolar planets. In combination with other methods of planet detection, direct imaging and spectroscopy will allow us to eventually: 1) study the physical properties of exoplanets (colors, temperatures, etc.) in depth and 2) fully map out the architecture of typical planetary systems. Direct imaging has offered us the first glimpse into the atmospheric properties of young high-mass (3-10 M Jup ) exoplanets. Deep direct imaging surveys for exoplanets have also yielded the strongest constraints to date on the statistical properties of wide giant exoplanets. A number of extremely high contrast exoplanet imaging instruments have recently come online or will come online within the next year (including Project 1640, SCExAO, SPHERE, GPI, among others). I will discuss future prospects with these instruments.
    No preview · Article · Jun 2014 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present J, H, CH_4 short (1.578 micron), CH_4 long (1.652 micron) and K_s-band images of the dust ring around the 10 Myr old star HR 4796 A obtained using the Near Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1 meter Telescope. Our images clearly show for the first time the position of the star relative to its circumstellar ring thanks to NICI's translucent focal plane occulting mask. We employ a Bayesian Markov Chain Monte Carlo method to constrain the offset vector between the two. The resulting probability distribution shows that the ring center is offset from the star by 16.7+/-1.3 milliarcseconds along a position angle of 26+/-3 degrees, along the PA of the ring, 26.47+/-0.04 degrees. We find that the size of this offset is not large enough to explain the brightness asymmetry of the ring. The ring is measured to have mostly red reflectivity across the JHK_s filters, which seems to indicate micron-sized grains. Just like Neptune's 3:2 and 2:1 mean-motion resonances delineate the inner and outer edges of the classical Kuiper Belt, we find that the radial extent of the HR 4796 A and Fomalhaut rings could correspond to the 3:2 and 2:1 mean-motion resonances of hypothetical planets at 54.7 AU and 97.7 AU in the two systems, respectively. A planet orbiting HR 4796 A at 54.7 AU would have to be less massive than 1.6 Mjup so as not to widen the ring too much by stirring.
    Full-text · Article · Apr 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new astrometry for the young (12-21 Myr) exoplanet beta Pictoris b taken with the Gemini/NICI, Magellan/MagAO+Clio2, and Magellan/MagAO+VisAO instruments between 2009 and 2012. The high dynamic range of our observations allows us to measure the relative position of beta Pic b with respect to its primary star with greater accuracy than previous observations. Based on a Markov Chain Monte Carlo analysis, we find the planet has an orbital semi-major axis of 9.2 [+8.3, -0.5] AU and orbital eccentricity <0.15 at 68% confidence (with 95% confidence intervals of 8.2-72.3 AU and 0.00-0.88 for semi-major axis and eccentricity, respectively). We find that the planet has reached its maximum projected elongation, enabling higher precision determination of the orbital parameters than previously possible, and that the planet's projected separation is currently decreasing. With unsaturated data of the entire beta Pic system (primary star, planet, and disk) obtained thanks to NICI's semi-transparent focal plane mask, we are able to tightly constrain the relative orientation of the circumstellar components. We find the orbital plane of the planet lies between the inner and outer disks but closer to the inner (warped) disk: the position angle (PA) of nodes (211.8 +/- 0.3 degrees) is 6-sigma greater than the PA of the spine of the outer disk and 1.8-sigma less than the warped inner disk PA. Finally, for the first time we are able to dynamically constrain the mass of the primary star beta Pic to 1.7 +/- 0.3 M_sun.
    Full-text · Article · Mar 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first ground-based CCD ($\lambda < 1\mu$m) image of an extrasolar planet. Using MagAO's VisAO camera we detected the extrasolar giant planet (EGP) $\beta$ Pictoris b in $Y$-short ($Y_S$, 0.985 $\mu$m), at a separation of $0.470 \pm 0.010''$ and a contrast of $(1.63 \pm 0.49) \times 10^{-5}$. This detection has a signal-to-noise ratio of 4.1, with an empirically estimated upper-limit on false alarm probability of 1.0%. We also present new photometry from the NICI instrument on the Gemini-South telescope, in $CH_{4S,1\%}$ ($1.58$ $\mu m$), $K_S$ ($2.18\mu m$), and $K_{cont}$ (2.27 $\mu m$). A thorough analysis of our photometry combined with previous measurements yields an estimated near-IR spectral type of L$2.5\pm1.5$, consistent with previous estimates. We estimate log$(L_{bol}/L_{Sun})$ = $-3.86 \pm 0.04$, which is consistent with prior estimates for $\beta$ Pic b and with field early-L brown dwarfs. This yields a hot-start mass estimate of $11.9 \pm 0.7$ $M_{Jup}$ for an age of $21\pm4$ Myr, with an upper limit below the deuterium burning mass. Our $L_{bol}$ based hot-start estimate for temperature is $T_{eff}=1643\pm32$ K (not including model dependent uncertainty). Due to the large corresponding model-derived radius of $R=1.43\pm0.02$ $R_{Jup}$, this $T_{eff}$ is $\sim$$250$ K cooler than would be expected for a field L2.5 brown dwarf. Other young, low-gravity (large radius), ultracool dwarfs and directly-imaged EGPs also have lower effective temperatures than are implied by their spectral types. However, such objects tend to be anomalously red in the near-IR compared to field brown dwarfs. In contrast, $\beta$ Pic b has near-IR colors more typical of an early-L dwarf despite its lower inferred temperature.
    Full-text · Article · Mar 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the confirmation of the binary nature of the nearby, very low-mass system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity sensitive alkali lines and strong lithium 6708 Angstrom absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity sensitive features and spectral morphology that is consistent with other young, very low-mass dwarfs. We combine the constraints from all age diagnostics to estimate a system age of ~30-200 Myr. The 1.2-4.7 micron spectral energy distribution of the components point toward T_eff=3200 +/- 500 K and T_eff=3100 +/- 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 113 +/- 8 M_Jup and 106 +/- 7 M_Jup from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the Solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and very low-masses.
    Preview · Article · Jan 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In February 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope atop Mount Graham in Arizona. LEECH nearly complements other high-contrast planet imaging efforts by observing stars in L' band (3.8 microns) as opposed to the shorter wavelength near-infrared bands (1-2.3 microns). This part of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. In this proceedings, we present the science goals for LEECH and a preliminary contrast curve from some early data.
    Full-text · Article · Jan 2014 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present two epochs of MPG/ESO 2.2m GROND simultaneous 6-band ($r'i'z'JHK$) photometric monitoring of the closest known L/T transition brown dwarf binary WISE J104915.57-531906.1AB. We report here the first resolved variability monitoring of both the T0.5 and L7.5 components. We obtained 4 hours of focused observations on the night of UT 2013-04-22, as well as 4 hours of defocused (unresolved) observations on the night of UT 2013-04-16. We note a number of robust trends in our light curves. The $r'$ and $i'$ light curves appear to be anticorrelated with $z'$ and $H$ for the T0.5 component and in the unresolved lightcurve. In the defocused dataset, $J$ appears correlated with $z'$ and $H$ and anticorrelated with $r'$ and $i'$, while in the focused dataset we measure no variability for $J$ at the level of our photometric precision, likely due to evolving weather phenomena. In our focused T0.5 component lightcurve, the $K$ band lightcurve displays a significant phase offset relative to both $H$ and $z'$. We argue that the measured phase offsets are correlated with atmospheric pressure probed at each band, as estimated from 1D atmospheric models. We also report low-amplitude variability in $i'$ and $z'$ intrinsic to the L7.5 component.
    Full-text · Article · Oct 2013 · The Astrophysical Journal

Publication Stats

1k Citations
230.96 Total Impact Points

Institutions

  • 2013-2015
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, Scotland, United Kingdom
  • 2007-2013
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 2011
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 2008-2011
    • Honolulu University
      Honolulu, Hawaii, United States
    • University of Hawaiʻi at Hilo
      Hilo, Hawaii, United States
  • 2009
    • University of Hawaiʻi at Mānoa
      Honolulu, Hawaii, United States
  • 2003-2008
    • The University of Arizona
      • Department of Astronomy
      Tucson, Arizona, United States