STI-571: An anticancer protein-tyrosine kinase inhibitor

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA 70119, USA.
Biochemical and Biophysical Research Communications (Impact Factor: 2.3). 11/2003; 309(4):709-17. DOI: 10.1016/j.bbrc.2003.08.055
Source: PubMed


STI-571 (imatinib, Gleevec, Glivec, CGP 57148) is an inhibitor of the Abl group of protein-tyrosine kinases. One of these enzymes, the Bcr-Abl oncoprotein, results from the fusion of the BCR and ABL genes that result from the reciprocal chromosomal translocation that forms the Philadelphia chromosome. The Philadelphia chromosome occurs in 95% of people with chronic myeloid leukemia. ABL is the cellular homologue of the oncogene found in murine Abelson leukemia virus, and BCR refers to breakpoint cluster region. The Bcr-Abl oncoprotein exhibits elevated protein-tyrosine kinase activity, which is strongly implicated in the mechanism of development of chronic myeloid leukemia. STI-571 is effective in the treatment of the stable phase of chronic myeloid leukemia. The c-Abl protein kinase domain exists in an active and inactive conformation. STI-571 binds only to the inactive state of the enzyme as shown by X-ray crystallography. The drug binds to a portion of the ATP-binding site and extends from there into adjacent hydrophobic regions. STI-571 is a competitive inhibitor of Abl kinase with respect to ATP. Resistance to STI-571 is often the result of mutations in residues of the Bcr-Abl kinase that ordinarily bind to the drug. Inhibition of target protein kinases represents an emerging therapeutic strategy for the treatment of cancer.

Download full-text


Available from: Robert Roskoski, Aug 14, 2015
  • Source
    • "ABCB1 is a 170-kDa apical plasma membrane protein ubiquitously expressed in kidney, placenta, liver, adrenal glands, intestine and blood-brain barrier cells, where it functions to protect against xenobiotics and cellular toxicants [10] [11]. In addition, ABCB1 can transport a wide range of anticancer drugs such as doxorubicin, vincristine, paclitaxel, and epipodophyllotoxins out of the cancer cells [7] [12]. The overexpression of ABCB1 can be induced after repeated exposure to anticancer drugs, when the tumor becomes refractory to chemotherapy . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells often become resistant to chemotherapy through a phenomenon known as multidrug resistance (MDR). Several factors are responsible for the development of MDR, preeminent among them being the accelerated drug efflux mediated by overexpression of ATP binding cassette (ABC) transporters. Some small molecule tyrosine kinase inhibitors (TKIs) were recently reported to modulate the activity of ABC transporters. Therefore, the purpose of this study was to determine if motesanib, a multikinase inhibitor, could reverse ABCB1-mediated MDR. The results showed that motesanib significantly sensitized both ABCB1-transfected and drug-selected cell lines overexpressing this transporter to its substrate anticancer drugs. Motesanib significantly increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant change in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 3μM motesanib for 72h. Moreover, motesanib stimulated the ATPase activity of ABCB1 in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, the docking studies indicated favorable binding of motesanib within the transmembrane region of homology modeled human ABCB1. Here, we report for the first time, motesanib, at clinically achievable plasma concentrations, antagonizes MDR by inhibiting the efflux activity of the ABCB1 transporter. These findings may be useful for cancer combination therapy with TKIs in the clinic.
    Full-text · Article · Jun 2014 · Biochemical Pharmacology
  • Source
    • "Ba/F3-1*6 and K562 cells were also treated with 1 µM Imatinib, as a positive control for pSTAT5 inhibition in K562 cells. The BCR-ABL inhibitor Imatinib drastically and specifically inhibited STAT5 phosphorylation in K562 cells (Figure 4C), as previously reported [56], [74]. In agreement with our previous data in Ba/F3 cells [21], TSA did not affect STAT5 phosphorylation in any of the three cell lines (Figure 4A–C). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription STAT5 is an essential mediator of cytokine, growth factor and hormone signaling. While its activity is tightly regulated in normal cells, its constitutive activation directly contributes to oncogenesis and is associated to a number of hematological and solid tumor cancers. We previously showed that deacetylase inhibitors can inhibit STAT5 transcriptional activity. We now investigated whether the dietary chemopreventive agent sulforaphane, known for its activity as deacetylase inhibitor, might also inhibit STAT5 activity and thus could act as a chemopreventive agent in STAT5-associated cancers. We describe here sulforaphane (SFN) as a novel STAT5 inhibitor. We showed that SFN, like the deacetylase inhibitor trichostatin A (TSA), can inhibit expression of STAT5 target genes in the B cell line Ba/F3, as well as in its transformed counterpart Ba/F3-1*6 and in the human leukemic cell line K562 both of which express a constitutively active form of STAT5. Similarly to TSA, SFN does not alter STAT5 initial activation by phosphorylation or binding to the promoter of specific target genes, in favor of a downstream transcriptional inhibitory effect. Chromatin immunoprecipitation assays revealed that, in contrast to TSA however, SFN only partially impaired the recruitment of RNA polymerase II at STAT5 target genes and did not alter histone H3 and H4 acetylation, suggesting an inhibitory mechanism distinct from that of TSA. Altogether, our data revealed that the natural compound sulforaphane can inhibit STAT5 downstream activity, and as such represents an attractive cancer chemoprotective agent targeting the STAT5 signaling pathway.
    Full-text · Article · Jun 2014 · PLoS ONE
  • Source
    • "Imatinib, a first generation ABL tyrosine kinase inhibitor (ABL TKI), is a competitive inhibitor that binds to the ATP-binding catalytic site of ABL and decreases kinase domain activity by stabilizing the protein in an active conformation [7]. Imatinib is highly for treating patients in the chronic phase of CML. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ABL kinase inhibitor imatinib is highly effective in treating most, but not all, patients with chronic myeloid leukemia (CML). This is because residual CML cells are generally present in the bone marrow microenvironment and are refractory to imatinib. Hematopoietic cytokine receptor signaling is mediated by Janus kinases (JAKs) and their downstream transcription factor, signal transducer and activator of transcription (STAT). TG101348 (SAR302503) is an oral inhibitor of JAK2. We investigated the efficacy of imatinib and TG101348 using the break point cluster region-c-Abelson (BCR-ABL)-positive cell line and primary CML samples wherein leukemia cells were protected by a feeder cell line (HS-5). Imatinib treatment resulted in partial inhibition of cell growth in HS-5-conditioned medium. Furthermore, combined treatment with imatinib and TG101348 abrogated the protective effects of HS-5-conditioned medium on K562 cells. Phosphorylation of Crk-L, a BCR-ABL substrate, decreased considerably, while apoptosis increased. In addition, the combined treatment of CD34-positive primary samples resulted in considerably increased cytotoxicity, decreased Crk-L phosphorylation, and increased apoptosis. We also investigated TG101348 activity against feeder cells and observed that STAT5 phosphorylation, granulocyte macrophage colony-stimulating factor, and interleukin 6 levels decreased, indicating reduced cytokine production in HS-5 cells treated with TG101348. These results showed that JAK inhibitors may enhance the cytotoxic effect of imatinib against residual CML cells and that a combined approach may be a powerful strategy against the stroma-associated drug resistance of Philadelphia chromosome-positive cells.
    Full-text · Article · Apr 2014 · Journal of Hematology & Oncology
Show more