Article

Synthesis and Pharmacological Evaluation of (Z)-9-(Heteroarylmethylene)-7-azatricyclo[4.3.1.03,7]decanes: Thiophene Analogues as Potent Norepinephrine Transporter Inhibitors.

Texas A&M University - Galveston, Galveston, Texas, United States
Bioorganic & Medicinal Chemistry Letters (Impact Factor: 2.42). 11/2003; 13(20):3565-9. DOI: 10.1016/S0960-894X(03)00786-8
Source: PubMed

ABSTRACT

To further explore the structure-activity relationships (SARs) of certain tropanes, and to gain insights into the structural features required for high activity and selectivity at norepinephrine transporters (NET), we have introduced both five- and six-membered heteroaromatic moieties such as substituted pyridyl, pyrazinyl, pyrimidyl, thiazolyl, and mono- or disubstituted thienyl groups into conformationally constrained, tricyclic tropane analogues. A number of (Z)-9-(heteroarylmethylene)-7-azatricyclo[4.3.1.0(3,7)]decanes were synthesized, and their abilities to block dopamine, serotonin, and norepinephrine reuptake by their respective transporters were evaluated. It was found that the five- or six-membered N-containing aromatics are too basic to display high NET activity, while some of the thiophene analogues were identified as potent and selective NET inhibitors.

1 Follower
 · 
14 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some piperidine-based nocaine/modafinil hybrid ligands have been designed, synthesized, and found to display an improved potency at all three monoamine transporters and particularly for DAT and/or NET. Some highly active and selective monoamine transporter inhibitors with low nanomolar to subnanomolar potency were identified. Ligands of this type may find important applications as positron emission tomography imaging tools and in the treatment of central nervous system disorders such as depression and sleep apnea.
    Full-text · Article · Nov 2004 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The norepinephrine transporter (NET) is located in the plasma membrane of noradrenergic neurons, where it functions to take up synaptically released norepinephrine (NE). The NET thus serves as the primary mechanism for the inactivation of noradrenergic signaling. Some potent and selective or mixed NET inhibitors (e.g., reboxetine and atomoxetine) have been successfully developed to treat a variety of mental disorders such as depression and attention deficit hyperactivity disorder (ADHD). However, to date, only a very limited number of NET-selective inhibitors are available. New potent and selective NET inhibitors may find application in the treatment of mental disorders or in PET imaging, and may enhance our basic understanding of these illnesses. In the present review, both previously reported and newly designed NET inhibitors, as well as their therapeutic and imaging potential, will be discussed. Two types of molecules, the conformationally constrained tropanes and the piperidine-based nocaine/modafinil hybrid ligands, represent new leads and provide good opportunities for discovering novel potent and selective NET inhibitors that are useful as therapies and imaging agents for the NET.
    No preview · Article · Dec 2004 · Drugs of the Future
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The norepinephrine transporter (NET) is located in the plasma membrane of noradrenergic neurons, where it functions to take up synaptically released norepinephrine (NE). The NET thus serves as the primary mechanism for the inactivation of noradrenergic signaling. Some potent and selective or mixed NET inhibitors (e.g., reboxetine and atomoxetine) have been successfully developed to treat a variety of mental disorders such as depression and attention deficit hyperactivity disorder (ADHD). However, to date, only a very limited number of NET-selective inhibitors are available. New potent and selective NET inhibitors may find application in the treatment of mental disorders or in PET imaging, and may enhance our basic understanding of these illnesses. In the present review, both previously reported and newly designed NET inhibitors, as well as their therapeutic and imaging potential, will be discussed. Two types of molecules, the conformationally constrained tropanes and the piperidine-based nocaine/modafinil hybrid ligands, represent new leads and provide good opportunities for discovering novel potent and selective NET inhibitors that are useful as therapies and imaging agents for the NET.
    Full-text · Article · Jan 2005 · Drugs of the Future
Show more