To assess age- and exercise-related changes in platelet aggregation, we measured the magnitude of platelet aggregation with a four-channel aggregometer, plasma and aortic polyunsaturated fatty acids by gas chromatography and related prostanoids with a reagent kit in young and aged non-exercised and in aged exercised rats.
Platelet aggregation in platelet-rich plasma induced by ADP (5 microm) in the primary wave increased with age. In the non-exercised groups, the basal levels of thromboxane B2 in platelet-rich plasma increased in aged rats compared with young rats. In aged exercised rats, the basal levels of 6-keto-prostaglandin F1alpha in platelet-rich plasma were stimulated and those of thromboxane B2 were depressed, compared with non-exercised aged rats. The plasma levels of eicosapentaenoic acid and docosahexaenoic acid increased with age. Only aortic eicosapentaenoic acid in the aged group increased by exercise. In the aged non-exercised and exercised groups, the aortic, but not the plasma, levels of eicosapentaenoic acid correlated inversely with the basal levels of thromboxane B2 in platelet-rich plasma (r = -0.53, P < 0.05) and associated negatively with the magnitudes of platelet aggregation induced by ADP (5 microm) (r = -0.47, P < 0.05).
These findings suggest that exercise in aged rats increases aortic eicosapentaenoic acid concentrations, which in turn depress the basal levels of thromboxane, B2 in platelet-rich plasma to modulate platelet aggregation.