Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine's curse)

Hôpital Universitaire Robert Debré, Lutetia Parisorum, Île-de-France, France
Human Molecular Genetics (Impact Factor: 6.39). 01/2004; 12(23):3173-80. DOI: 10.1093/hmg/ddg339
Source: PubMed


Congenital central hypoventilation syndrome (CCHS, Ondine's curse) is a rare disorder of the chemical control of breathing. It is frequently associated with a broad spectrum of dysautonomic symptoms, suggesting the involvement of genes widely expressed in the autonomic nervous system. In particular, the HASH-1-PHOX2A-PHOX2B developmental cascade was proposed as a candidate pathway because it controls the development of neurons with a definitive or transient noradrenergic phenotype, upstream from the RET receptor tyrosine kinase and tyrosine hydroxylase. We recently showed that PHOX2B is the major CCHS locus, whose mutation accounts for 60% of cases. We also studied the proneural HASH-1 gene and identified a heterozygous nucleotide substitution in three CCHS patients. To analyze the functional consequences of HASH-1 mutations, we developed an in vitro model of noradrenergic differentiation in neuronal progenitors derived from the mouse vagal neural crest, reproducing in vitro the HASH-PHOX-RET pathway. All HASH-1 mutant alleles impaired noradrenergic neuronal development, when overexpressed from adenoviral constructs. Thus, HASH-1 mutations may contribute to the CCHS phenotype in rare cases, consistent with the view that the abnormal chemical control of breathing observed in CCHS patients is due to the impairment of noradrenergic neurons during early steps of brainstem development.

Download full-text


Available from: Ha Trang
  • Source
    • "These mice also lack parasympathetic and sympathetic ganglia, and the enteric nerves of the esophagus. HASH1, the human equivalent to Mash1, acts downstream of the PHOX2 transcription factors, which are expressed in all neurons in the noradrenergic synthesis pathway at some point (de Pontual et al., 2003; Pattyn et al., 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural crest cells (NCCs) are a transient, migratory cell population, which originates during neurulation at the neural folds and contributes to the majority of tissues, including the mesenchymal structures of the craniofacial skeleton. The deregulation of the complex developmental processes that guide migration, proliferation, and differentiation of NCCs may result in a wide range of pathological conditions grouped together as neurocristopathies. Recently, due to their multipotent properties neural crest stem cells have received considerable attention as a possible source for stem cell based regenerative therapies. This exciting prospect underlines the need to further explore the developmental programs that guide NCC differentiation. This review explores the particular importance of ribosome biogenesis defects in this context since a specific interface between ribosomopathies and neurocristopathies exists as evidenced by disorders such as Treacher-Collins-Franceschetti syndrome (TCS) and Diamond-Blackfan anemia (DBA).
    Full-text · Article · Feb 2014 · Frontiers in Physiology
  • Source
    • "Deletion of Mash1 impaired the generation of sympathetic, parasympathetic, and enteric neurons as well as neural progenitor cells, especially in the olfactory sensory epithelium and the ventral telencephalon (Guillemot et al., 1993; Hirsch et al., 1998; Lo et al., 1998; Casarosa et al., 1999; Horton et al., 1999; Cau et al., 2002; Wildner et al., 2006). Furthermore, mutations in the ASCL1 gene are associated with the congenital central hypoventilation syndrome (CCHS) phenotype (de Pontual et al., 2003; Sasaki et al., 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human achaete-scute homolog-1 (hASH1), encoded by the human ASCL1 gene, belongs to the family of basic helix-loop-helix transcription factors. hASH1 and its mammalian homolog Mash1 are expressed in the central and peripheral nervous system during development, and promote early neuronal differentiation. Furthermore, hASH1 is involved in the specification of neuronal subtype identities. Misexpression of the transcription factor is correlated with a variety of tumors, including lung cancer and neuroendocrine tumors. To gain insights into the molecular mechanisms of hASH1 regulation, we screened for conditions causing changes in hASH1 gene expression rate. We found that treatment of human neuroblastoma-derived Kelly cells with phorbol 12-myristate 13-acetate (PMA) resulted in a fast, strong and long-lasting suppression of hASH1 synthesis. Reporter gene assays with constructs, in which the luciferase activity was controlled either by the ASCL1 promoter or by the hASH1 mRNA untranslated regions (UTRs), revealed a mainly UTR-dependent mechanism. The hASH1 promoter activity was decreased only after 48 h of PMA administration. Our data indicate that different mechanisms acting consecutively at the transcriptional and post-transcriptional level are responsible for hASH1 suppression after PMA treatment. We provide evidence that short term inhibition of hASH1 synthesis is attributed to hASH1 mRNA destabilization, which seems to depend mainly on protein kinase C activity. Under prolonged conditions (48 h), hASH1 suppression is mediated by decreased promoter activity and inhibition of mRNA translation.
    Full-text · Article · Feb 2011 · Frontiers in Molecular Neuroscience
  • Source
    • "To this end we investigated mutations affecting afferent neurons in the distal sensory ganglia of the ninth and tenth cranial nerves (petrosal and nodose ganglia respectively) and particularly the subpopulation of chemoafferent cells expressing Tyrosine Hydroxylase (TH) in the petrosal ganglia. It appears that developmental genes such as Phox2 paralogs may be responsible for reflex arches set up and for unconscious breathing control (Amiel et al. 2003; de Pontual et al. 2003). Phox2 is a family of homeodomain transcription factors that includes two paralogs, Phox2a and Phox2b, which are considered to be master regulators of neuronal phenotype and survival in specific subsets of central and peripheral neurons (Pattyn et al, 1997). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of genes encoding Phox2a or Phox2b transcription factors induce modifications of different brainstem neuronal networks. Such modifications are associated with defects in breathing behavior at birth. In particular, an abnormal breathing frequency is observed in Phox2a-/- mutant mice, resulting from abnormal development of the locus coeruleus (LC) nucleus. However, the role of Phox2a proteins in the establishment of respiratory neuronal pathways is unknown, largely because mutants die shortly after birth. In the present study, we examined the effects of a haploinsufficiency of the Phox2a gene. Phox2a heterozygotes survive and exhibit a significantly larger inspiratory volume both during normoxic breathing and in response to hypoxia and a delayed maturation of inspiratory duration compared to wild-type animals. This phenotype accompanied by an unaltered frequency is evident at birth and persists until at least postnatal day 10. Morphological analyses of Phox2a+/- animals revealed no anomaly in the LC region, but highlighted an increase in the number of cells expressing tyrosine hydroxylase enzyme, a marker of chemoafferent neurons, in the petrosal sensory ganglion. These data indicate that Phox2a plays a critical role in the ontogeny of the reflex control of inspiration.
    Full-text · Article · Apr 2007 · Neuroscience
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.