ArticlePDF AvailableLiterature Review

Stress and Plasticity in the Limbic System



The adult nervous system is not static, but instead can change, can be reshaped by experience. Such plasticity has been demonstrated from the most reductive to the most integrated levels, and understanding the bases of this plasticity is a major challenge. It is apparent that stress can alter plasticity in the nervous system, particularly in the limbic system. This paper reviews that subject, concentrating on: a) the ability of severe and/or prolonged stress to impair hippocampal-dependent explicit learning and the plasticity that underlies it; b) the ability of mild and transient stress to facilitate such plasticity; c) the ability of a range of stressors to enhance implicit fear conditioning, and to enhance the amygdaloid plasticity that underlies it.
0364-3190/03/1100–1735/0 © 2003 Plenum Publishing Corporation
Neurochemical Research, Vol. 28, No. 11, November 2003 (© 2003), pp. 1735–1742
Stress and Plasticity in the Limbic System*
Robert M. Sapolsky
(Accepted March 4, 2003)
The adult nervous system is not static, but instead can change, can be reshaped by experience.
Such plasticity has been demonstrated from the most reductive to the most integrated levels, and
understanding the bases of this plasticity is a major challenge. It is apparent that stress can alter
plasticity in the nervous system, particularly in the limbic system. This paper reviews that sub-
ject, concentrating on: a) the ability of severe and/or prolonged stress to impair hippocampal-
dependent explicit learning and the plasticity that underlies it; b) the ability of mild and transient
stress to facilitate such plasticity; c) the ability of a range of stressors to enhance implicit fear
conditioning, and to enhance the amygdaloid plasticity that underlies it.
KEY WORDS: Stress; hippocampus; glucocorticoids; amygdala; LTP; LTD.
In 1967’s The Graduate, Dustin Hoffman, embark-
ing on life postcollege, was given some unwanted career
advice—plastics. And the field of neural plasticity has
yet to recover fully from this setback.
We all responded to that bit of advice with a snicker,
based on the pejorative view of “plastic” as artificial, un-
natural, cold, unyielding. And the problem is that neural
plasticity traditionally implies anything but that. Instead,
it is a good thing. Specifically, it is a field built around
the fact that experience can alter the nervous system adap-
tively, enhancing function in self-perpetuating ways. At
the level of the synapse, this is the world of long-term
potentiation and related electrophysiological phenomena.
At the cytoarchitectural level, it is the demonstration that
neurons can respond to the proper stimuli by forming new
synapses, by elaborating dendritic processes. At the cellular
level, it is the truly revolutionary finding that learning,
environmental enrichment, even exercise can stimulate
neurogenesis. As perhaps the most important cornerstone
of such plasticity, these instances of experience-dependent
modification of the nervous system can occur throughout
the lifetime.
Carl Cotman has made seminal contributions to this
topic, helping to make it one of the most exciting branches
of neuroscience. But neural plasticity has a dark side. It
is not the banality of “plastics,” but instead, the undesir-
able realm where “neural plasticity” means that experi-
ence is causing involution, impairment, and damage to the
nervous system. This can include impairment of LTP,
retraction of dendritic processes, inhibition of neurogene-
sis, and even the death of neurons.
In principle, this need not be particularly interesting,
the fact that there can be “good” and “bad” aspects to
neural plasticity. For example, there can be “good” and
“bad” aspects to, say, the neurobiological consequences
of things that we humans can ingest. Thus, ingest a well-
balanced diet and you promote proper neural develop-
ment; ingest a diet with vast excesses of alcohol and you
promote neuron death. This is a fairly unsubtle contrast.
What is fascinating in the realm of the adaptive and
0364-3190/03/1100–1735/0 © 2003 Plenum Publishing Corporation
* Special issue dedicated to Dr. Carl Cotman.
Departments of Biological Sciences, and of Neurology and Neuro-
logical Sciences, Stanford University, Gilbert Laboratory, MC 5020,
Stanford, California 94305-5020. Tel: 650-723-2649; E-mail: sapol-
472092.qxd 13/9/03 6:01 PM Page 1735
1736 Sapolsky
maladaptive features of experience-dependent neural plas-
ticity is how similar the experiences can be in bringing
about quite contrasting outcomes. Depending on changes
in the magnitude or duration of the stimulus, the indi-
vidual who is experiencing the stimulus, or the part of
the brain being considered, the outcome can be neural
plasticity of the “good” kind or of the “bad.”
In this review I will first consider the basic find-
ings regarding how one aspect of experience—the expe-
rience of stress—can have adverse effects on neural
plasticity. I will then consider some parameters in which
stress does not always have such adverse effects and
can even promote versions of the classically “good”
forms of neural plasticity.
Glucocorticoids and Their Adverse Effects on
Hippocampal-Dependent Cognition
Glucocorticoids (GCs) are the adrenal steroid hor-
mones secreted in response to stress. The hormones are
central to successfully coping with a major physical stres-
sor (such as fleeing a predator), as they mobilize stored
energy, increase cardiovascular tone, and suppress costly
anabolism (such as growth, tissue repair, reproduction,
digestion and immunity) for more auspicious times. How-
ever, if the exposure to GCs is prolonged, there are a
variety of pathological outcomes that become more likely,
including insulin-resistant diabetes, hypertension,
immunosuppression, and reproductive impairments (1).
These deleterious consequences include adverse
effects in the nervous system. The most dramatic ones
occur in the hippocampus, a primary GC target, with
ample quantities of corticosteroid receptors.
At the most integrated level, sustained stress or
exposure to GCs can impair aspects of hippocampal-
dependent cognition. Memory is not a monolithic
phenomenon; instead, there are a number of types of
memory, with the medial temporal lobe, and particularly
the hippocampus within it, playing a critical role in
explicit memory (concerned with facts and events) (2).
Thus stressors as different as a number of weeks of daily
restraint stress, brief exposure to the smell of a preda-
tor (a cat), or months of rotating group membership
disrupt spatial memory performance in rats (a classic
hippocampal-dependent explicit memory task in a
rodent) (3–5). The stress-induced GC secretion in these
instances appears to mediate the disruptive effects. As
evidence, similar time courses of administration of
exogenous GCs producing circulating levels typical of
the stress range also disrupt spatial memory perform-
ance (6–8). Such impaired performance could reflect
impairment of the initial consolidation of the spatial
information and/or the retrieval of it. Recent work sug-
gests that it is the retrieval component that is most sen-
sitive to the disruptive effects of GCs (9,10).
An emerging literature demonstrates that GCs can
disrupt hippocampal-dependent declarative memory per-
formance in humans as well. Some of these studies exam-
ine humans treated chronically with exogenous GCs to
control an autoimmune, or inflammatory disorder, or an
immune cancer (11,12). Moreover, declarative memory
performance in Cushing’s syndrome patients (in which
GCs are hypersecreted secondary to any of a number of
types of tumors) is impaired (13). A fascinating literature
of aged humans demonstrate that those whose basal GC
levels increase most dramatically with age over time, or
increase most dramatically in response to an acute stres-
sor, have the poorest declarative memory performance
(14–21). Finally, treatment of healthy volunteers with
exogenous GCs in the range used in clinical medicine
impairs declarative memory performance as well (22–29).
As with the rodent studies, the impaired performance in
the hippocampal-dependent tasks could represent impair-
ment of consolidation and/or retrieval; as with rodents, it
appears as if the retrieval component is most sensitive
(30). As important controls, a number of these studies
demonstrating impairment of hippocampal-dependent cog-
nition also demonstrated that hippocampal-independent
cognition remained intact (11,29).
Thus stress and/or exposure to elevated GC concen-
trations disrupt hippocampal-dependent cognition while
sparing hippocampal-independent cognition, in both
rodents and humans.
Mechanisms Underlying These Adverse GC Effects
There is considerable information regarding the
mechanisms contributing to these disruptive GC actions.
As an initial critical observation, GCs and stress impair
the synaptic plasticity essential to hippocampal-dependent
cognition. Thus stress disrupts long-term potentiation
(LTP) and primed burst potentiation (PBP) in a variety
of hippocampal cell fields in vivo (31–37), with the sug-
gestion that PBP is more vulnerable to this effect than
is LTP (38). Moreover, administration of exogenous
GCs in a regimen producing circulating concentrations
typical of stress also disrupt LTP and PBP (36,39–42).
In addition, both premortem stress and in vitro GC expo-
sure disrupt LTP in hippocampal slices in vitro (38,43).
There are two receptors for GCs found in the brain
(with ample concentrations of both in the hippocampus),
472092.qxd 13/9/03 6:01 PM Page 1736
Stress and Plasticity in the Limbic System 1737
with the high-affinity mineralocorticoid receptor (MR)
occupied heavily under basal conditions, and the low
affinity glucocorticoid receptor (GR) occupied heavily
only during major stressors. Heavy occupancy of GR
mediates these disruptive effects of stress and GCs upon
LTP (39,42,44). Such GR occupancy leads to increased
calcium conductance in hippocampal neurons; this in
turn leads to prolonged opening of calcium-dependent
potassium channels, thereby prolonging afterhyperpo-
larizations. This results in decreased neuronal excitabil-
ity (45–48).
It has come to be recognized that LTP can be coun-
teracted by long-term depression (LTD). Not surprisingly,
stress and GCs enhance LTD under conditions where they
disrupt LTP (35,39,49).
These GC effects at the level of synaptic plasticity
could readily explain the ability of the hormone to
impair cognition. However, GCs have deleterious effects
on the cytoarchitectural level in the hippocampus as
well. Specifically, over the course of a few days to
weeks, stress and/or exposure to elevated GC concen-
trations will cause retraction of dendritic processes in
rats. Golgi staining reveals that the atrophy arises from
a loss of apical dendritic branch points and decreases in
the length of apical dendrities (6,50–53). Such regres-
sion occurs in CA1 and CA3 cell fields of the hip-
pocampus (50,51,54) and can be caused by an array of
stressors and, in those cases, the regression is GC
dependent (55). Importantly, with the cessation of stress
or GC exposure, the process is slowly reversible, with
neuron rebuilding processes (52).
The mechanisms underlying this phenomenon are
being revealed. GC-induced atrophy is NMDA-receptor
mediated, because it is blocked by receptor antagonists
(51), or by drugs that decrease the release of glutamate,
such as dilantin (56,57). There appears to be a seroton-
ergic involvement as well, because the atypical antide-
pressant tianeptine, which decreases serotonergic tone, is
also protective (52,58). As would be expected, stress- or
GC-induced atrophy of dendritic processes also leads to
the cognitive deficits described above and, importantly,
pharmacological interventions that block the former can
prevent the latter (59).
The effects of stress upon dendritic arborization have
also been demonstrated in the nonhuman primate (60) and
may extend to the human as well. Magnetic resonance
imaging of Cushing’s syndrome patients has revealed
selective decreases in hippocampal volume (13), where
more severe hypersecretion of GCs correlated with
smaller hippocampi and more impairments of hippocam-
pal-dependent cognition. Importantly, this shrinkage is
reversible with the correction of the GC excess (61), sug-
gesting the reversible atrophy of processes seen in the
animal studies.
Another somewhat controversial route by which
stress and GCs may impair cognition has emerged in
recent years. The acceptance by the neuroscience com-
munity that the early, heretical reports of adult neuroge-
nesis in the hippocampus are true represents a revolution
in the field. Environmental enrichment, exercise and
estrogen all promote such neurogenesis. Conversely,
stress inhibits hippocampal neurogenesis in rodents and
nonhuman primates (62). The mechanisms underlying
this fascinating phenomenon are poorly understood at
present, but may well be related to the effects of GCs
upon neurotrophins and cell cycle genes (62). At least
some newly born neurons in the adult hippocampus
appear to form functional connections with other neurons
(63). Far more controversial, however, is whether such
neurogenesis is necessary or sufficient to explain any
instances of learning and memory (64). Thus, it is not
clear whether inhibition of neurogenesis by stress has
cognitive consequences.
Finally, an excess of stress and/or GCs can affect
the viability of hippocampal neurons. Specifically, both
compromise the ability of such neurons to survive a
variety of coincident neurological insults, such as
seizure, hypoxia-ischemia, and hypoglycemia (65).
Moreover, truly prolonged exposure to either can kill
hippocampal neurons outright (66–68); it has been sug-
gested that the atrophy of dendritic processes that would
precede any such neuron death can be viewed as an
involutional defense, a cellular hibernation, in effect,
decreasing the risks of neuron death (69). However, it
should be noted that the direct neurotoxic effects of
stress and GCs rarely occur, and require unphysiologi-
cal extremes of GC exposure.
Thus, excessive stress or GC exposure can impair
hippocampal-dependent cognition, and there are an array
of mechanisms that seemingly mediate this; these find-
ings clearly fall under the rubric of stress having “bad”
effects upon neural plasticity. I now consider two strik-
ing exceptions to this.
Stress, Stimulation and Inverse-U’s
Whether considering childhood, old age, or any
point in between, optimal function does not arise from
a life without challenge. Instead, it involves the opti-
mal amounts of challenge, what we typically refer to
as “stimulation.” Virtually by definition, what we view
to be stimulatory is transient exposure to a mild
stressor. A sufficiently severe challenge, no matter how
transient, is aversive. Moreover, a truly prolonged
472092.qxd 13/9/03 6:01 PM Page 1737
1738 Sapolsky
challenge, no matter how mild, is also aversive (in this
regard, it is not by chance that roller coaster rides are
3 minutes, rather than 3 weeks in duration). Stimula-
tion not only is not aversive, but is reinforcing, as
shown by the capacity of transient exposure to mildly
elevated GC levels to enhance dopaminergic transmis-
sion in the ventral tegmental/nucleus accumbens
“pleasure” pathways (70).
Given these effects of mild, transient stressors, it
is not surprising that such “stimulatory” stressors also
enhance hippocampal-dependent cognition. When com-
bined with the disruptive effects of more severe or pro-
longed stressors upon such cognition, this forms an
“inverse-U” pattern (71); the transition from subphysio-
logical or basal GC concentrations into the mild stress
range enhances cognition, and elevations beyond that
disrupt cognition. This inverse-U pattern has been
shown with enhancement with mild stressors and dis-
ruption with more severe ones (3,5,59,72–77). It has
also been demonstrated in rodents exposed to exogenous
GCs, rather than to stress regimens (78,79). Moreover,
a similar inverse-U pattern holds at the electrophysio-
logical level. Thus, whereas severe stressors or GC
exposure disrupt LTP and PBP, milder exposure
enhances it (41,47,74,80,81).
Some elegant studies have revealed the mecha-
nisms underlying such inverse-U patterns. As noted, the
hippocampus contains ample quantities of both MR and
GR, with the former heavily occupied basally, while the
latter, with its order of magnitude lower affinity, is only
heavily occupied in response to major stressors. This
suggests a relatively straightforward scenario: the tran-
sition from basal to mild stress levels of GCs, and the
resulting transition from heavy to saturating MR occu-
pancy, is responsible for the enhancing effects upon
synaptic plasticity and cognition. The transition to major
stress levels of GCs and the resulting heavy GR occu-
pancy then mediates the deleterious effects.
There is considerable evidence supporting this pic-
ture. Thus MR occupancy enhances LTP and PBP (39,
41,79,80,81), as well as hippocampal-dependent spatial
memory tasks (82). As an explanation for the enhanced
excitability, MR occupancy reduces 5HT-1a receptor-
mediated, calcium-independent potassium currents,
thereby shortening afterhyperpolarization duration (45).
And completing the two-receptor mediation of an
inverse-U pattern, heavy GR occupancy enhances LTD
(39) and disrupts spatial memory (83,84).
More recent studies suggests that this dichotomy
between MR and GR actions is oversimplified. Specifi-
cally, the enhancing effects of mild, transient GC
elevations are not only mediated by MR (and the tran-
sition from heavy to saturating occupancy), but by GR
as well (with the transition from very low to moderate
occupancy) (83–88). Thus, the inverse-U that contrasts
stimulation with major stress is not merely due to a con-
trast between MR and GR, but rather between MR plus
moderate GR occupancy, on one hand, versus heavy GR
occupancy on the other.
Stress, Implicit Memory, and Flashbulb Memory
I now discuss a second realm in which stress can
facilitate, rather than disrupt, memory. As noted, there are
multiple types of memory, and whereas explicit memory
is concerned with facts and events, “implicit” memory cov-
ers an array of non-declarative processes. These include
classical Pavlovian conditioning of autonomic responses,
procedural memory concerned with nonconscious skills
and habits, and reflex pathways. This is the realm of con-
ditioned responses to fear. The learned, nonconscious, and
autonomic nature of such memory is shown when one’s
heart begins to race when in a setting similar to where
some trauma occurred, even before one is consciously
aware of the similarity of the setting.
Stress is particularly effective at enhancing aspects
of implicit memories related to autonomic conditioning,
implicit reflexes, and fear. For example, many (but not
all) stressors will enhance subsequent classical Pavlovian
eyeblink conditioning in a rat (89–91); specifically, the
enhancement takes the form of more and larger magni-
tude eyeblinks in response to the conditioned stimulus.
Similarly, stress enhances Pavlovian conditioning of
freezing responses in rats (84,92). While stress-induced
GC secretion is required for such cases of enhancement,
the GCs seem to be permissive, in that stressors that do
or do not enhance such conditioning do not differ in the
magnitude of GC secretion they provoke.
The amygdala, another limbic structure rich in cor-
ticosteroid receptors, plays a critical role in fear con-
ditioning and in its potentiation by stress (71,92,93).
Thus, under circumstances where prolonged stress dis-
rupts the cognition that is mediated by the hippocam-
pus, it facilitates amygdala-dependent cognition. A
fascinating literature is now documenting this polarity
on a more reductive level. Specifically, under circum-
stances in which stress impairs hippocampal LTP, it
facilitates amygdaloid LTP (93). Even more remark-
ably, a recent report demonstrates that under circum-
stances in which stress causes atrophy of dendritic
processes in the hippocampus, the same stressor causes
extension of processes by neurons in the amygdala (94)
and in the bed nucleus of the stria terminalis, an amyg-
daloid projection site central to anxiety (95). The mech-
472092.qxd 13/9/03 6:01 PM Page 1738
Stress and Plasticity in the Limbic System 1739
anisms underlying these opposing effects remain to be
Stress facilitates another aspect of the interactions
between fear and memory. Fear-evoked memory forma-
tion is not merely about autonomic reflexes. Our hearts
do not merely race when we consider planes piloted into
skyscrapers. Instead, in addition to these implicit, con-
ditioned memories, we have explicit memories as well
of where we were, for example, when hearing the news
on September, 11th, 2001. Such “flashbulb” memories
are characterized by their vividness and, amid the vivid-
ness, their relatively low level of accuracy. Flashbulb
memories related to stress and trauma reflect the fact that
we not only form implicit memories about such events,
but form explicit memories centered around contextual
cues about the event. As such, stress enhances condi-
tioning to contextual cues of a stressor (83,92,96,97).
In a classical and fascinating demonstration of this phe-
nomenon in humans, subjects were read one of two 12-
sentence stories. Both had identical beginning and last
four sentences; however, in one case, the middle four
sentences described a strongly emotional and disturbing
scene, whereas in the other case, those middle four sen-
tences were affectively neutral. It was then shown that
some weeks later, recall of the middle four sentences
was superior in individuals who had heard the disturb-
ing scene, compared with those who heard the neutral
one; recall of the first and last four sentences did not dif-
fer between the groups (98).
Such explicit memories are the purview of the hip-
pocampus, and this is initially quite puzzling, given the
extensive literature reviewed above showing stress to
disrupt hippocampal-dependent cognition. This paradox
can be resolved with the view that during stress, the hip-
pocampus is less able to perform its traditional role of
the processing of objective, neutral declarative infor-
mation, and instead is recruited into a more amygdala-
like role. In effect, the highly affective, often inaccurate
process of forming a flashbulb memory seems like what
would be produced were the amygdala to “attempt”
to take on the task of forming a declarative memory,
rather than if the job were done by the more steady
Remarkably, this nonscientific framing is actually
quite accurate, in that the hippocampus forms declara-
tive flashbulb memories during stress only when driven
by amygdaloid arousal. This is shown with an elegant
and detailed series of studies (reviewed in [96,99])
demonstrating that stress-induced enhancement of con-
textual memory consolidation by the hippocampus is
blocked by lesions of the amygdala, specifically of the
basolateral amygdala. Activation of the amygdala dur-
ing stress requires arousal by the sympathetic nervous
system. During stress, circulating catecholamines stimu-
late the afferent branch of the vagus nerve, which stimu-
lates the nucleus of the tractus solitarius (NTS). This in
turn causes the NTS to stimulate the amygdala via a
major noradrenergic input. Furthermore, the normal
recruitment by the amygdala of the hippocampus into
this cognitive role during stress requires GC action
within the hippocampus, amygdala, and NTS; as evi-
dence, microinfusion of GR antagonists into any of
those structures disrupts stress-induced enhancement of
contextual learning. Thus the phenomenon requires
cooperation between the adrenocortical branch of the
stress-response (i.e., the secretion of GCs) and the
adrenomedullary/sympathetic branch.
The classical work in the early 1960s showing that
environmental enrichment during infancy could cause
lasting and beneficial effects upon the brain helped usher
in a view of use-dependent plasticity in the nervous sys-
tem. This stance has formed a strong scientific rationale
behind a number of basically optimistic interventions in
humans, ranging from the Head Start program in children
to rehabilitation strategies poststroke in elderly individ-
uals. In this context, the adverse effects of stress upon
the nervous system—the capacity of stress to impair
synaptic plasticity in the hippocampus, to involute the
processes of hippocampal neurons, to hasten the death
of such neurons, and to impair neurogenesis—have
always been viewed as the dark side of plasticity.
Given that, the discovery that stress could do essen-
tially opposite things in the amygdala, namely enhancing
plasticity and arborization of dendritic processes, seems
initially like a welcome counter to the grim effects of
stress in the hippocampus. To a biologist purely con-
cerned with the function of synapses or neural networks,
perhaps it is. Nonetheless, it must be recalled that these
“good” effects of stress upon function of amygdaloid neu-
rons are ultimately highly deleterious. This is because of
the relevance of potentiated amygdaloid function to fear,
anxiety and posttraumatic stress disorder (PTSD). As but
one example of the relevance of this, two recent and very
nonsensationalist papers (99, 100) generate credible esti-
mates of up to 500,000 excess cases of PTSD emerging
in the New York City area as a result of the occurrences
on September, 11th, 2001. In that staggering context, the
ability of stress to enhance the function of synapses and
neurons is anything but salutary, and underlines the press-
ing need to understand these effects more fully.
472092.qxd 13/9/03 6:01 PM Page 1739
1740 Sapolsky
1. Sapolsky, R., Romero, M., and Munck, A. 2000. How do gluco-
corticoids influence the stress-response? Integrating permissive,
suppressive, stimulatory, and preparative actions. Endocr Rev. 21:
2. Squire, L. 1987 Memory and Brain, New York, Oxford University
3. Conrad, C., Galea, L., Kuroda, Y., and McEwen, B. 1996.
Chronic stress impairs rat spatial memory on the Y maze, and
this effect is blocked by tianeptine pretreatment. Behav. Neurosci.
4. Diamond, D., Park, C., Heman, K., and Rose, G. 1999. Exposing
rats to a predator imparis spatial working memory in the radial
arm water maze. Hippocampus 9:542–552.
5. Bodnoff, S., Humphreys, A., Lehman, J., Diamond, D., Rose, G.,
and Meaney, M. 1995. Enduring effects of chronic corticosterone
treatment on spatial learning, synaptic plasticity, and hippocampal
neuropathology in young and mid-aged rats. J. Neurosci. 15:61–69.
6. Bisagno, V., Ferrini, M., Rios, H., Zieher, L., and Wikinski, S.
2000 Chronic corticosterone impairs inhibitory avoidance in rats:
Possible link with atrophy of hippocampal CA3 neurons. Pharm.
Biochem. Behav. 66:235–240.
7. Endo, Y., Nishimura, J., Kogayashi, S., and Kimura, F. 1999.
Chronic stress exposure influences local cerebral blood flow in
the rat hippocampus. Neuroscience 93:551–563.
8. Luine, V., Spencer, R., and McEwen, B. 1993. Effects of chronic
corticosterone ingestion on spatial memory performance and hip-
pocampal serotonergic function. Brain Res. 616:65–70.
9. de Quervain, D., Roozendaal, B., and McGaugh, J. 1998. Stress
and glucocorticoids impair retrieval of long-term spatial memory.
Nature 394:787–790.
10. Roozendaal, B., Griffith, Q., Buranday, J., de Quervain, D., and
McGaugh, J. 2003. The hippocampus mediates glucocorticoid-
induced impairment of spatial memory retrieval: Dependence
upon the basolateral amygdala. Proc. Natl. Acad. Sci. USA
11. Keenan, P., Jacobson, M., Soleymani, R., Mayes, M., Stress, M.,
and Yaldoo, D. 1996. The effect on memory of chronic pred-
nisone treatment in patients with systemic disease. Neurology
12. Waber, D., Carpentieri, S., Klar, N., Silverman, L., Schwenn, M.,
Hurwitz, CA., Mullenix, P., Tarbell, N., and Sallan, S. 2000. Cog-
nitive sequelae in children treated for acute lymphoblastic
leukemia with dexamethasone or prednisone. J. Ped. Hematol.
Oncol. 22:206–215.
13. Starkman, M., Gebarski, S., Berent, S., and Schteingart, D. 1992.
Hippocampal formation volume, memory dysfunction, and corti-
sol levels in patients with Cushing’s syndrome. Biol. Psychiatry
14. Heuser, I., Schweiger, U., Gotthardt, U., Schmider, J., Lammers, C.,
Dettling, M., and Holsboer, F. 1996. Pituitary-adrenal system regu-
lation and psycopathology during amitriptyline treatment in elderly
depressed patients and normal controls. Am. J. Psychiatry 153:
15. Kelly, K., Hayslip, B., and Servaty, H. 1996 Psychoneuroen-
docrinological indicators of stress and intellectual performance
among older adults: An exploratory study. Exp. Aging Res.
16. Meaney, M., O’Donnell, D., Rowe, W., Tannenbaum, B.,
Steverman, A., Walker M., Nair, N., and Lupien, S. 1995 Indi-
vidual differences in HPA activity in later life and hippocampal
aging. Exp. Gerontol. 30:229–251.
17. Lupien, S., Lecours, A., Lussier, I., Schwartz, G., Nair, N., and
Meaney, M. 1994. Basal cortisol levels and cognitive deficits in
human aging. J. Neurosci. 14:2893–2903.
18. Lupien, S. and McEwen, B. 1997. The acute effects of corticos-
teroids on cognition: Integration of animal and human model stud-
ies. Brain Res. Rev. 24:1–27.
19. Lupien, S., de Leon, M., de Santi, S., Convit, A., Tarshish, C.,
Nair, N., Thakur, M., McEwen, B., Hauger, R., and Meaney, M.
1998. Cortisol levels during human aging predict hippocampal
atrophy and memory deficits. Nat. Neurosci. 1:69–73.
20. Seeman, T., McEwen, B., Singer, B., Albert, M., and Rowe, J.
1997. Increase in urinary cortisol excretion and memory declines:
MacArthur studies of successful aging. J. Clin. Endocrinol.
Metab. 82:2458–2467.
21. Sharma, S., Turken, A., Schwartz, G., Nair, N., De Leon, M.,
Meaney, M., Hauger, R., and Lupien, S. 1995. A longitudinal
study of DHEA-S levels, cortisol levels and cognitive function in
elderly human subjects. Society of Neuroscience Annual Meet-
ing, Abstract 21.668.
22. Wolkowitz, O., Reuss, V., and Weingartner, H. 1990. Cognitive
effects of corticosteroids. Am. J. Psychiatry 147:1297–1310.
23. Wolkowitz, O., Weingartner, H., Rubinow, D., Jimerson, D.,
Kling, M., Berretini, W., Thompson, K., Breier, A., Doran, A.,
Reus, V., and Pickar, D. 1993. Steroid modulation of human
memory: Biochemical correlates. Biol. Psychiatry 33:744–751.
24. Newcomer, J., Craft, S., Hershey, T., Askins, K., and Bardgett,
M. 1994. Glucocorticoid-induced impairment in declarative mem-
ory performance in adult human. J. Neurosci. 14:2047–2053.
25. Keenan, P., Jacobson, M., Soleymani, R., and Newcomer, J. 1995.
Commonly used therapeutic doses of glucocorticoids impair
explicit memory. Ann. NY Acad. Sci. 761:400–402.
26. Newcomer, J., Selke, G., Melson, A., Hershey, T., Craft, S.,
Richards, K., and Alderson A. 1999. Decreased memory per-
formance in healthy humans induced by stress-level cortisol treat-
ment. Ach. Gen. Psychiatry 56:527–533.
27. Born, J. and Fehm, H. 1999. HPA activity during human sleep:
A coordinating role for the limbic hippocampal system. Exp. Clin.
Endocrinol. Diabetes 106:153–162.
28. Kirschbaum, C., Wolf, O. T., May, M., Wippich, W., and
Hellhammer, D. H. 1996. Stress- and treatment-induced eleva-
tions of cortisol levels associated with impaired declarative mem-
ory in healthy adults. Life Sci. 58:1475–1483.
29. Young, A., Sahakain, B., Robbins, T., and Cowen, P. 1999. The
effects of chronic administration of hydrocotisone on cognitive
function in normal male volunteers. Psychopharm. 145:260–266.
30. De Quervain, D., Roozendaal, B., Nitsch, R., McGaugh, J., and
Hock, C. 2000. Acute cortisone administration impairs retrieval
of long-term declarative memory in humans. Nat. Neurosci.
31. Diamond, D. and Park, C. 2000. Predator exposure produces ret-
rograde amnesia and blocks synaptic plasticity: Progress toward
understanding how the hippocampus is affected by stress. Ann.
NY Acad. Sci. 911:453–455.
32. Foy, M., Stanton, M., Levine, S. and Thompson, R. 1987. Behav-
ioral stress impairs long-term potentiation in rodent hippocam-
pus. Behav. Neural Biol. 48:138–149.
33. Shors, T. and Dryver, E. 1994. Effect of stress and long-term
potentiation (LTP) on subsequent LTP and the theta burst
response in the dentate gyrus. Brain Res. 666:232–238.
34. Shors, T., Seib, T., Levine, S., and Thompson, R. 1989.
Inescapable versus escapable shock modulates long-term potenti-
ation in the rat hippocampus. Science 244:224–226.
35. Xu, L., Anwyl, R., and Rowan, M. 1997 Behavioural stress facil-
itates the induction of long-term depression in the hippocampus.
Nature 387:497–500.
36. Diamond, D., Fleshner, M., and Rose, G. 1994. Psychological
stress repeatedly blocks hippocampal primed burst potentiation in
behaving rats. Behav. Brain Res. 62:1–9.
37. Diamond, D., Bennett, M., Stevens, K., Wilson, R., and Rose, G.
1990. Exposure to a novel environment interferes with the induc-
tion of hippocampal primed burst potentiation in the behaving rat.
Psychobiology 18:273–281.
38. Mesches, M., Fleshner, M., Heman, K., Rose, G., and Diamond, D.
1999. Exposing rats to a predator blocks primed burst potentiation
in the hippocampus in vitro. J. Neurosci. 19:RC18.
472092.qxd 13/9/03 6:01 PM Page 1740
Stress and Plasticity in the Limbic System 1741
39. Pavlides, C., Watanabe, Y., Margarinos, A., and McEwen, B. 1995
Opposing roles of type I and type II adrenal steroid receptors in
hippocampal long-term potentiation. Neuroscience 68:387–394.
40. Diamond, D., Bennett, M., Engstrom, D., Fleshner, M., and
Rose, G. 1989. Adrenalectomy reduces the threshold for hip-
pocampal primed burst potentiation in the anesthetized rat. Brain
Res. 492:356–360.
41. Diamond, D. M., Bennett, M. C., Fleshner, M., and Rose, G. M.
1992. Inverted-U relationship between the level of peripheral cor-
ticosterone and the magnitude of hippocampal primed burst
potentiation. Hippocampus 2:421–430.
42. Pavlides, C., Watanabe, Y., and McEwen, B. 1993. Effects of
glucocorticoids on hippocampal long-term potentiation. Hip-
pocampus 3:183–192.
43. Zhou, J., Zheng, J., Zhang, Y., Zhou, J. 2000. Corticosterone
impairs cultured hippocampal neurons and facilitates Ca
through voltage-dependent Ca
channel. Acta Pharmacol. Sinica
44. Xu, L., Holscher, C., Anwyl, R., and Rowan, M. J. 1998. Glu-
cocorticoid receptor and protein/RNA synthesis-dependent mech-
anisms underlie the control of synaptic plasticity by stress. Proc.
Natl. Acad. Sci. USA 95:3204–3208.
45. Joels, M. and deKloet, E. 1992. Control of neuronal excitability
by corticosteroid hormones. Trends Neurosci. 15:25–30.
46. Kerr, D., Campbell, L., Thibault, O., and Landfield, P. 1992. Hip-
pocampal glucocorticoid receptor activation enhances voltage-
dependent calcium conductances: Relevance to brain aging. Proc.
Natl. Acad. Sci. USA 89:8527–8531.
47. Hesen, W. and Joels, M. 1993. Modulation of carbachol respon-
siveness in rat CA1 pyramidal neurons by corticosteroid hor-
mones. Brain Res. 627:157–167.
48. Beck, S., List, T., and Choi, K. 1994. Long and short term admin-
istration of corticosterone alters CA1 hippocampal neuronal prop-
erties. Neuroendocrinoloogy 60:261–272.
49. Kim, J. J., Foy, M. R., and Thompson, R. F. 1996. Behavioral stress
modifies hippocampal plasticity through N-methyl-D-aspartate
receptor activation. Proc. Natl. Acad. Sci. USA 93:4750–4753.
50. Woolley, C., Gould, E., and McEwen, B. 1990. Exposure to
excess glucocorticoids alters dendritic morphology of adult hip-
pocampal pyramidal neurons. Brain Res. 521:225–31.
51. Watanabe, Y., Gould, E., and McEwen, BS. 1992. Stress induces
atrophy of apical dendrites of hippocampal CA3 pyramidal neu-
rons. Brain Res. 588:341–345.
52. Conrad, C. and McEwen, B. 2000. Acute stress increases neu-
ropeptide Y mRNA within the arcuate nucleus and hilus of the
dentate gyrus. Mol. Brain Res. 79:102–109.
53. Sunanda, B., Meti, T., and Raju, T. 1997. Entorhinal cortex
lesioning protects hippocampal CA3 neurons from stress-induced
damage. Brain Res. 770:302–108.
54. Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F., and
Paula-Barbosa, M. M. 2000. Reorganization of the morphology of
hippocampal neurites and synapses after stress-induced damage
correlates with behavioral improvement. Neuroscience 97:253–266.
55. Magarinos, A. and McEwen, B. 1995. Stress-induced atrophy of
apical dendrites of hippocampal CA3c neurons: Involvement of
glucocorticoid secretion and excitatory amino acid receptors. Neu-
roscience 69:89–98.
56. Watanabe, Y., Gould, E., Cameron, H., Daniels, D., and
McEwen, B. 1992. Phenytoin prevents stress-and corticosterone-
induced atrophy of CA3 pyramidal neurons. Hippocampus
57. Magarinos, A. and McEwen, B. 1995. Stress-induced atrophy of
apical dendrites of hippocampal CA3c neurons: Comparison of
stressors. Neuroscience 69:83–88.
58. Czeh, B., Michaelis, T., Watanabe, T., Frahm, J., de Biurrun, G.,
van Kampen, M., Bartolomucci, A., and Fuchs, E. 2001. Stress-
kinduced changes in cerebral metabolites, hippocampal volume,
and cell proliferation are prevented by antidepressnat treatment
with tianeptine. Proc. Natl. Acad. Sci. USA 98:12796–12801.
59. Luine, V., Villegas, M., Martinez, C., and McEwen, B. 1994.
Repeated stress causes reversible impairments of spatial memory
performance. Brain Res. 639:167–170.
60. Magarinos, A., McEwen, B., Flugge, D., and Fuchs, E. 1996.
Chronic psychosocial stress causes apical dendritic atrophy of hip-
pocampal CA3 pyramidal neurons in subordinate tree shrews.
J. Neurosci. 16:3534–3540.
61. Starkman, M., Giordani, B., Gebarski, S., Berent, S., Schork, M.,
and Schteingart, D. 1999. Decrease in cortisol reverses human
hippocampal atrophy following treatment of Cushing’s disease.
Biol. Psychiatry 46:1595–1602.
62. Gould, E. and Gross, C. 2002. Neurogenesis in adult mammals:
Some progress and problems. J. Neurosci. 22:619–623.
63. Van Praag, H., Schinder, A., Christie, B., Toni, N., Palmer, T.,
and Gage, F. 2002. Functional neurogenssis in the adult hip-
pocampus. Nature 415:1030–1034.
64. Shors, T., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and
Gould, E. 2001. Neurogenesis in the adult is involved in the for-
mation of trace memories. Nature 410:372–376.
65. Sapolsky, R. 1999. Stress, glucocorticoids and their adverse
neurological effects: Relevance to aging. Exp. Gerontol. 34:
66. Landfield, P., Baskin, R., and Pitler, T. 1981. Brain-aging corre-
lates: Retardation by hormonal-pharmacological treatments. Sci-
ence 214:581–584.
67. Sapolsky, R., Krey, L., and McEwen, B. 1985. Prolonged glu-
cocorticoid exposure reduces hippocampal neuron number:
Implications for aging. J. Neurosci. 5:1221–1227.
68. Kerr, D., Campbell, L., Applegate, M., Brodish, A., and
Landfield, P. 1991. Chronic stress-induced acceleration of elec-
trophysiologic and morphometric biomarkers of hippocampal
aging. J. Neurosci. 11:1316–1322.
69. McEwen, B. 1999. Stress and hippocampal plasticity. Annu. Rev.
Neurosci. 22:105–122.
70. Piazza, P. and Le Moal, M. 1997. Glucocortiocids as a biological
substrate of reward: Physiological and pathophysiological impli-
cations. Brain Res. Rev. 25:359–378.
71. Kim, J. and Diamond, D. 2002. The stressed hippocampus, synap-
tic plasticity and lost memories. Nat. Rev. Neurosci. 3:4534–
72. Luine, V., Martinez, C., Villegas, M., Magarinos, A., and
McEwen, B. 1996. Restraint stress reversibly enhances spatial
memory performance. Physiol. Behav. 59:27–32.
73. Luine, V. 2002. Sex differences in chronic stress effects on mem-
ory in rats. Stress 5:205–216.
74. Beck, K. and Luine, V. 1999. Food deprivation modulates chronic
stress effects on object recognition in male rats: Role of
monoamines and amino acid. Brain Res. 830:56–71.
75. McLay, R., Freeman, S., and Zadina, J. 1998. Chronic corticos-
terone impairs memory performance in the Barnes maze. Phys-
iol. Behav. 63:933–7.
76. Tabira, T. 2000. Chronic stress induces impairment of spatial
working memory and of prefrontal dopaminergic dysfunction.
J. Neurosci. 20:1568–1574.
77. Sandi, C., Loscertales, M., and Guanza, C. 1997. Experience-
dependent facilitating effect of corticosterone on spatial memory
formation in the water maze. Eur. J. Neurosci. 9:637–642.
78. Conrad, C., LeDoux, J., Magarinos, A., and McEwen, B. 1999.
Repeated restraint stress facilitates fear conditioning independ-
ently of causing hippocampal CA3 dendritic atrophy. Behav. Neu-
rosci. 113:902–913.
79. Joels, M. 2001. Corticosteroid actions in the hippocampus.
J. Neuroendocrinol. 13:657–669.
80. Pavlides, C., Kimura, A., Magarinos, A., and McEwen, B. 1994.
Type I adrenal steroid receptors prolong hippocampal long-term
potentiation. Neuroreport 5:2673–2677.
81. Vaher, P., Luine, V., Gould, E., and McEwen, B. 1994 Effects
of adrenalectomy on spatial memory performance and dentate
gyrus morphology. Brain Res. 656:71–78.
472092.qxd 13/9/03 6:01 PM Page 1741
1742 Sapolsky
82. Oitzl, M., Fluttert, M., and de Kloet, E. 1998. Acute blockade of
hippocmapal glucocorticoid receptors facilitates spatial learning
in rats. Brain Res. 797:159–166.
83. Conrad, C., LeDoux, J., Magarinos, A., and McEwen, B. 1999.
Repeated restraint stress facilitates fear conditioning independ-
ently of causing hippocampal CA3 dendritic atrophy. Behav. Neu-
rosci. 113:902–913.
84. Oiztl, M. and de Kloet, E. 1992. Selective corticosteriod antago-
nists modulate specific aspects of spatial orientation learning.
Behav. Neurosci. 106:62–71.
85. Roozendaal, B., Portillo-Marquez, G., and McGaugh, J. 1996. Baso-
lateral amygdala lesions block glucocorticoid-induced modulation
of memory for spatial learning. Behav. Neurosci. 100:1074–1083.
86. De Kloet, E., de Kock, S., Schild, V., and Veldhuis, H. 1988.
Antiglucocorticoid RU 38486 attenuates retention of a behavior
and disinhibits the hypothalamic-pituitary-adrenal axis at differ-
ent sites. Neuroendocrinology 47:109–115.
87. Korte, S., de Kloet, E., Buwalda, B., Bopuman, S., and Bohus, B.
1996. Antisense to the glucocorticoid receptor in hippocampal den-
tate gyrus reduces immobility in forced swim test. Eur. J. Phar-
macol. 301:19–25.
88. Shors, T., Weiss, C., and Thompson, R. 1992. Stress-induced
facilitation of classical conditioning. Science 257:537–539.
89. Shors, T., Chua, C., and Falduto, J. 2001. Sex differences and
opposite effects of stress on dendritic spine density in the male
versus female hippocampus. J. Neurosci. 21:6292–6297.
90. Servatius, R., and Shors, T. 1994. Exposure to inescapable stress
persistently facilitates associative and nonassociative learning in
rats. Behav. Neurosci. 108:1101–1106.
91. Korte, S. 2001. Corticosteroids in relation to fear, anxiety and
psychopathology. Neurosci. Biobehav. Rev. 25:117–131.
92. LeDoux, J. 2000. Emotion circuits in the brain. Annu. Rev. Neu-
rosci. 23:155–184.
93. Vyas, A., Mitra, R., Shankaranarayana Rao, B., and Chatterji, S.
2002. Chronic stress induces contrasting patterns of dendritic
remodeling in hippocampal and amygdaloid neurons. J. Neurosci.
94. Vyas, A., Bernal, S., and Chattarji, S. 2003. Effects of chronic
stress on dendritic arborization in the central and extended amyg-
dala. Brain Res. 965:290–294.
95. Roozendaal, B. 2000. Glucocorticoids and the regulation of
memory consolidation. Psychoneuroendocrinology 25:213–238.
96. Dolan, R. 2002. Emotion, cognition and behavior. Science
97. Cahill, L., Prins, B., Weber, M., and McGaugh, J. 1994. Beta-
adrenergifc activation and memory for emotional events. Nature
98. McGaugh, J. 2003. Emotion and Memory. New York, Weidenfeld
and Nicolson.
99. Galea, S., Resnick, H., Ahern, J., Gold, J., Bucuvalas, M.,
Kilpatrick, D., Stuber, J., and Vlahov, D. 2002. PTSD in
Manhattan, New York City, after the September 11th terrorist
attacks. J. Urban Health Bull. N Y Acad. Med. 79:340–353.
100. Schlenger, W., Caddell, J., Ebert, L., Jordan, B., Rourke, K.,
Wilson, D., Thalji, L., Dennis, J., Fairbank, J., and Kulka, R.
2002. Psychological reactions to terrorist attacks: Findings from
the National Study of Americans’ Reactions to September 11.
JAMA 288:581–588.
472092.qxd 13/9/03 6:01 PM Page 1742
... In addition to social referencing, another mechanism that is used in the regulation of emotions among infants is the modulation of stress reactivity and fear learning by the parents (Sapolsky, 2003). At the onset of an incident that triggers fear, parents buffer their reaction to harden the limbic systems of their young ones from traumatic responses (Sapolsky, 2003). ...
... In addition to social referencing, another mechanism that is used in the regulation of emotions among infants is the modulation of stress reactivity and fear learning by the parents (Sapolsky, 2003). At the onset of an incident that triggers fear, parents buffer their reaction to harden the limbic systems of their young ones from traumatic responses (Sapolsky, 2003). Researchers reviewing this growth process have indicated that during a certain sensitive stage in development, access to parental cues is the sole external source of emotional regulation. ...
... These parental cues are aimed at ensuring that the infant does not learn to associate threatening stimuli with a cue (such as light or tone). However, in incidences where parents express defensive behaviors, cues surrounding threatening scenarios have been quite effective in amplifying the amygdala reactivity (Sapolsky, 2003). Parents effectively serve as an external limbic system for infants during periods when the prefrontal cortex is not mature (Sapolsky, 2003). ...
Full-text available
Based on a biopsychological background, this paper critically examines the emotion regulation functions of various brain regions and their role in different stages of development. The paper argues that the limbic system and the limbic cortex play an important role in the brain's emotion regulation processes.
... A lo largo del ciclo vital humano cada característica sea física o conductual se va expresando con interdependencia a los distintos componentes ambientales. Por tanto, pensar en el crecimiento y desarrollo sin la existencia de desafíos y adversidades, o bien bajo una determinación exclusivamente genética, no es factible, dado que los mismos sistemas vivos requieren soportes y recursos materiales, energéticos y afectivos para su propia construcción y reproducción (Sapolsky 2003). ...
... Varias son las áreas cerebrales usadas en la memoria y la interpretación de las circunstancias, así como en la regulación de los mediadores de las respuestas comportamentales, por ejemplo, la fijación de una situación previa de estrés en la memoria está regulada por la amígdala (Sapolsky 2003). ...
... No obstante, una repuesta alostática sostenida acarrea pérdidas en la memoria neutral causado por los efectos nocivos directos en las células hipocampales. Los efectos negativos son específicamente más detrimentales en la memoria declarativa, los cuales son potenciados por la alta densidad de receptores GC en el hipocampo (Sapolsky 2003). ...
El presente artículo presenta una revisión sobre los procesos alostáticos involucrados en la respuesta de regulación fisiológica humana imbricada en la interacción entre los sistemas ambientales y sociales, en donde el estrés crónico juega un papel relevante en la emergencia de las enfermedades crónicas no transmisibles. El concepto de estrés en el ámbito de la antropología física pormenoriza las dinámicas orgánicas y comportamentales del individuo inserto en el medio social, para lo cual los conceptos de alostasis y carga alostática adquieren una importancia sin igual al conjugar la noción de variabilidad, el aprendizaje, la adaptación y la capacidad de anticipación del sujeto. A fin de complementar con otras perspectivas a la noción predominante sobre los mecanismos de regulación homeostática y la idea de la reactividad fisiológica en el proceso de salud y enfermedad, el estudio de la desregulación alostática parte de una integración entre los sistemas nervioso, metabólico, neuroendócrino e inmunológico y, conjuga el carácter polifacético del ambiente como agente inductor de condiciones fuertemente nocivas al individuo o bien un medio con la capacidad de brindar el soporte para el desarrollo y el bienestar humano.
... Stress causes structural changes in the hippocampus, prefrontal cortex, amygdala, anterior cingulate cortex, and basal ganglia. 1 Excessive external stress is a widely accepted theory in the development of mood disorders such as depression and anxiety. 2 Stress negatively affects many parts of the brain which are involved in the regulation of emotion including the cortex and hippocampus. 3,4 In addition, for decades the idea that maladaptive stress impairs cognitive function has been a cornerstone to be explored in basic and clinical research. In human studies, acute stressors can cause short-term, but reversible deficits in tasks of memory, while chronic stress could lead to irreversible loss of hippocampal neurons and cognitive impairment. ...
Full-text available
Purpose: Repeated stress events are well known to be associated with the onset of behavioral abnormalities including depression, anxiety and memory impairment. In spite of the traditional uses of Moringa oleifera (MO), no experimental evidence for its use against chronic stress exists. Here, we investigated whether seed oil from MO (MOO) could improve behavior abnormalities of chronic stress mice induced by water-immersion restraint stress (WIRS) and the underlying mechanism. Methods: BALB/C male mice at 12 weeks of age were exposed to chronic WIRS for two weeks and divided in to four groups: normal group, WIRS group, WIRS+MOO1 group (treated with MOO at the dose of 1 mL/kg BW), and WIRS+MOO2 group (treated with MOO 2 mL/kg BW). The MOO treatment was given orally for 23 days. On day 24, we checked the behavior parameters, the plasma level of cortisol, acetylcholinesterase (AChE) activity in hippocampus, mRNA expression level of brain-derived neurotrophic factor (BDNF) and oxidative stress parameters in brain tissues. In addition, we also checked the histopathological features of the gastric mucosa wall. Results: Administration of MOO ameliorated anxiety-like, depression-like and memory impairment phenotypes in the WIRS mouse model although the plasma cortisol concentrations were comparable among the groups. Of note, MOO both in two doses could suppress the AChE activity in hippocampus tissue and ameliorated the MDA level in prefrontal cortex tissue in mice exposed to WIRS. Although only WIRS+MOO2 group could increase the mRNA expression of BDNF, the histopathological gastric mucosa wall features were improved in all MOO groups. Conclusion: Taken together, these finding suggested that MOO may have a neuroprotective effect in the mouse model of WIRS as evidenced by improving the abnormal behaviors through enhancing mRNA expression level of BDNF, inhibited AChE activity, and prevented the increase of MDA level in the brain.
... Among those regions, the hippocampus is of particular interest since the hippocampal sizes in patients with depression were shown to be decreased and stress also caused the hippocampus atrophy in animal models of depression (MacQueen et al., 2003;Sapolsky, 2000). Furthermore, the hippocampus exhibited many changes in neural plasticity in stress-induced depression models (Pittenger & Duman, 2008;Sapolsky, 2003). However, stress induced neural plasticity involved in the pathophysiology of mood disorders including depression is still not understood well due to the difficulty of analyzing behavior and the behavior-related molecular events in humans or animal models. ...
Bombesin receptor-activated protein (BRAP) and its homologous protein in mice, which is encoded by bc004004 gene, were expressed abundantly in brain tissues with unknown functions. We treated bc004004-/- mice with chronic unpredictable mild stress (CUMS) to test whether those mice were more vulnerable to stress-related disorders. The results of forced swimming test, sucrose preference test, and open field test showed that after being treated with CUMS for 28 days or 35 days both bc004004-/- and bc004004+/+ mice exhibited behavioural changes and there was no significant difference between bc004004+/+ and bc004004-/-. However, behavioural changes were observed only in bc004004-/- mice after being exposed to CUMS for 21 days, but not in bc004004+/+ after 21-day CUMS exposure, indicating that lack of BRAP homologous protein may cause vulnerability to stress-related disorders in mice. In addition, bc004004-/- mice showed a reduction in recognition memory as revealed by novel object recognition test. Since memory changes and stress related behavioural changes are all closely related to the hippocampus function we further analyzed the changes of dendrites and synapses of hippocampal neurons as well as expression levels of some proteins closely related to synaptic function. bc004004-/- mice exhibited decreased dendritic lengths and increased amount of immature spines, as well as altered expression pattern of synaptic related proteins including GluN2A, synaptophysin and BDNF in the hippocampus. Those findings suggest that BRAP homologous protein may have a protective effect on the behavioural response to stress via regulating dendritic spine formation and synaptic plasticity in the hippocampus.
The stress, healing, and resilience model of whole person care provides a patient-centered perspective of nursing practice within the context of the nurse–patient relationship. The framework delineates the key concepts that constitute the core biological and behavioral makeup of every person as the primary predicate for nursing practice. Health depends on the interrelated effects of stress, healing, resilience, and development as well as personal and social resources, coping, meaning, and lifestyle behaviors which permeate throughout all systems from the molecular to the spiritual. Nursing’s role is delineated by the model’s specified goals, desired outcomes, and proposed psychosocial interventions consistent with the discipline of nursing. The model’s conceptualization of nursing in relation to the whole person is relevant across research and clinical and educational arms. It is relevant for all nurses seeking to strengthen the resilience of healthy and chronically ill individuals across the lifespan.KeywordsConceptual model of nursing practicePsychological stressHealing and resilienceCopingNonlinear networks of biological constituents
Despite the clinical and theoretical importance of the negative content in auditory verbal hallucinations (AVHs), little research has been conducted on the topic. A handful of studies suggest that trauma or adverse life events contribute to negative content. The findings are somewhat inconsistent, however, possibly due to methodological limitations. Moreover, only trauma occurring in childhood has been investigated so far. In the present study, we studied the effect of abuse, experienced in either child- or adulthood, and clinical status on negative content of AVHs in four groups of participants that were assessed as part of a large, previously published online survey: Individuals with a psychotic disorder and AVHs (total n = 33), who had experienced abuse (n = 21) or not (n = 12) as well as a group of healthy individuals with AVHs (total n = 53), who had experienced abuse (n = 31) or not (n = 22). We hypothesized that having experienced abuse was associated with a higher degree of negative content. The clinical group collectively reported significantly higher degrees of negative AVHs content compared to the healthy group, but there was no effect of abuse on the degree of negative AVHs content. The presence of AVHs was more common amongst individuals who reported a history of abuse compared to individuals with no history of abuse, both in clinical and healthy participants with AVHs. This implies that at group level, being subjected to traumatic events increases an individual's vulnerability to experiencing AVHs. However, it does not necessarily account for negative content in AVHs.
Objectives: Loneliness has been shown to increase the risk of dementia. However, it is unclear why greater loneliness is associated with greater susceptibility to dementia. Herein, we aimed to examine the morphological characteristics of the brain associated with loneliness in older people concerned about cognitive dysfunction. Methods: In this retrospective study, 110 participants (80 with amnestic mild cognitive impairment, and 30 cognitively healthy individuals) were included. Participants were assessed using the revised University of California at Los Angeles (UCLA) loneliness scale and had undergone magnetic resonance imaging. Spearman correlation analysis and Mann-Whitney U tests were used to examine the clinical factors associated with loneliness. Multiple regression was performed to examine the relationship between the revised UCLA loneliness scale score and regional gray matter (GM) volume on voxel-based morphometry. Results: The revised UCLA loneliness scale scores were not significantly correlated with age, sex, or mini-mental state examination (MMSE) scores. Multiple regression using age, sex, MMSE score, and total brain volume as covariates showed negative correlations of the revised UCLA loneliness scale scores with the grey matter volume in regions centered on the bilateral thalamus, left hippocampus and left parahippocampal gyrus, and left entorhinal area. Conclusions: Subjective loneliness was associated with decreased GM volume in the bilateral thalamus, left hippocampus, and left entorhinal cortex of the brain in the older people, thereby providing a morphological basis for the increased risk of dementia associated with greater loneliness.
Emerging evidence has confirmed resveratrol's (RES) antioxidant, anti-inflammatory, and antidepressant effects. The beneficial effects of RES were confirmed for several emotional and cognitive deficits. This research aimed to assess the impacts of RES on behavior and hippocampal levels of anti-inflammatory and pro-inflammatory factors in rats exposed to chronic social isolation (SI) stress, which is known to induce mental disorders such as depressive-like behavior. The animals were treated by RES (20, 40, or 80 mg/kg/intraperitoneally) for 28 days following a 28-day exposure to stress. Behavioral tests, including the forced swim test (FST), open-field test (OFT), tail suspension test (TST), and sucrose preference test (SPT), assessed depressive symptoms. Finally, the animals were sacrificed, and molecular studies (qPCR and ELISA) were performed. Exposure of animals to SI dramatically increased the immobility of animals in TST and FST, enhanced the time spent in the open-field peripheral zone of the OFT, and reduced the sucrose preference rate. In addition, SI increased serum levels of corticosterone and hippocampal content of MDA, whereas it reduced hippocampal SOD and CAT activities. Moreover, SI upregulated the expression of IL-10, IL-18, and IL-1β and downregulated the expression of TGF-β in the hippocampus. RES treatment (40 & 80 mg/kg) significantly improved the behavioral alterations through the modulation of neuroinflammation and oxidative stress. The 20 mg/kg RES dose was inefficient for treating SI-induced depressive-like behavior. These results indicated that RES attenuated depressive-like behavior in prolonged stressed animals. These properties might be associated with RES-mediated improvements in serum corticosterone and hippocampal inflammatory and oxidative stress biomarkers.
The assessment of the victim is an important aspect of investigation, which includes medical, psychological, legal and forensic aspects. The current chapter focuses on the psychological assessment of the victims. The first part of the chapter focuses on the biopsychosocial impacts of stress and trauma while considering the field of victimology and emphasized the theoretical-practical considerations. The second part of the chapter focuses on the various psychological tests used for the evaluations with detailed descriptions of each test. It was concluded that a comprehensive psychological assessment is required for the victims by a trained psychologist who has expertise in dealing with victims to give a clear picture of the psychological process of the victims.KeywordsVictimsAssessmentVictimologyTraumaPsychological tests
Full-text available
Chronic restraint stress causes significant dendritic atrophy of CA3 pyramidal neurons that reverts to baseline within a week. Therefore, the authors assessed the functional consequences of this atrophy quickly (within hours) using the Y maze. Experiments 1-3 demonstrated that rats relied on extrinsic, spatial cues located outside of the Y maze to determine arm location and that rats with hippocampal damage (through kainic acid, colchicine, or trimethyltin) had spatial memory impairments. After the Y maze was validated as a hippocampally relevant spatial task, Experiment 4 showed that chronic restraint stress impaired spatial memory performance on the Y maze when rats were tested the day after the last stress session and that tianeptine prevented the stress-induced spatial memory impairment. These data are consistent with the previously demonstrated ability of tianeptine to prevent chronic stress-induced atrophy of the CA3 dendrites.