Expression of HbC and HbS, but not HbA, results in activation of K-Cl cotransport activity in transgenic mouse red cells

Harvard University, Cambridge, Massachusetts, United States
Blood (Impact Factor: 10.45). 04/2004; 103(6):2384-90. DOI: 10.1182/blood-2003-01-0237
Source: PubMed


Elevation of K-Cl cotransport in patients with homozygous hemoglobin (Hb) S or HbC increases red cell mean corpuscular hemoglobin concentration (MCHC) and contributes significantly to pathology. Elucidation of the origin of elevated K-Cl cotransport in red cells with mutant hemoglobins has been confounded by the concomitant presence of reticulocytes with high K-Cl cotransport. In red cells of control mice (C57BL), transgenic mice that express only human HbA, and transgenic mice that express both mouse globins and human HbS, volume stimulation is weak and insensitive to NO3- and dihydroindenyl-oxy-alkanoic acid (DIOA). DIOA and NO3- are inhibitors in all other mammalian red cells. In contrast, in knock-out mice expressing exclusively human hemoglobin HbC or HbS+ gamma, replacement of isotonic Cl- media by hypotonic Cl- resulted in strong volume stimulation and sensitivity to DIOA, okadaic acid, and NO3-. In summary, we find that HbC, under all conditions, and HbS+ gamma, in the absence of mouse globins, have significant quantitative and qualitative effects on K-Cl cotransport in mouse red cells and activate mouse K-Cl. We conclude that human globins are able to stimulate the activity and/or regulation of K-Cl cotransport in mouse red cells. These observations support the contention that HbS and HbC stimulate K-Cl cotransport in human red cells.

Download full-text


Available from: Mary Fabry
  • Source
    • "Seven week old C57BL/6J or human hemoglobin transgenic α H β A mice that were hemizygous for the transgene (Romero et al., 2004), but had no knock-outs or deletions, were infected retroorbitaly with ~10 7 CFU grown to mid-log phase in tryptic soy broth and resuspended in sterile PBS. Ninety-six hours post infection the mice were euthanized with forced inhalation of CO 2 . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron is required for bacterial proliferation, and Staphylococcus aureus steals this metal from host hemoglobin during invasive infections. This process involves hemoglobin binding to the cell wall of S. aureus, heme extraction, passage through the cell envelope, and degradation to release free iron. Herein, we demonstrate an enhanced ability of S. aureus to bind hemoglobin derived from humans as compared to other mammals. Increased specificity for human hemoglobin (hHb) translates into an improved ability to acquire iron and is entirely dependent on the staphylococcal hemoglobin receptor IsdB. This feature affects host-pathogen interaction as demonstrated by the increased susceptibility of hHb-expressing mice to systemic staphylococcal infection. Interestingly, enhanced utilization of human hemoglobin is not a uniform property of all bacterial pathogens. These results suggest a step in the evolution of S. aureus to better colonize the human host and establish hHb-expressing mice as a model of S. aureus pathogenesis.
    Full-text · Article · Dec 2010 · Cell host & microbe
  • [Show abstract] [Hide abstract]
    ABSTRACT: To realize the concurrent development of engine hardware and control software, a rapid modeling method has been proposed based on "projection method" for mechanical portions and conservation laws for the other portions. Those methods can preserve the assembling model components of the actual engine represented by the visual image. In order to realize the rapid modeling environment, the concept of "base model" and "model library" has been also introduced. The base model defines partitioning of engine model and the interfaces among the model components. It can be used as the template for the required engine model. The model of a targeted subsystem control, an actuator control as an example, can be rapidly developed abstracting the necessary portions which are revised or simplified according to the required fidelity.
    No preview · Conference Paper · Oct 2004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review intends to summarize the vast literature on K-Cl cotransport (COT) regulation from a functional and genetic viewpoint. Special attention has been given to the signaling pathways involved in the transporter's regulation found in several tissues and cell types, and more specifically, in vascular smooth muscle cells (VSMCs). The number of publications on K-Cl COT has been steadily increasing since its discovery at the beginning of the 1980s, with red blood cells (RBCs) from different species (human, sheep, dog, rabbit, guinea pig, turkey, duck, frog, rat, mouse, fish, and lamprey) being the most studied model. Other tissues/cell types under study are brain, kidney, epithelia, muscle/smooth muscle, tumor cells, heart, liver, insect cells, endothelial cells, bone, platelets, thymocytes and Leishmania donovani. One of the salient properties of K-Cl-COT is its activation by cell swelling and its participation in the recovery of cell volume, a process known as regulatory volume decrease (RVD). Activation by thiol modification with N-ethylmaleimide (NEM) has spawned investigations on the redox dependence of K-Cl COT, and is used as a positive control for the operation of the system in many tissues and cells. The most accepted model of K-Cl COT regulation proposes protein kinases and phosphatases linked in a chain of phosphorylation/dephosphorylation events. More recent studies include regulatory pathways involving the phosphatidyl inositol/protein kinase C (PKC)-mediated pathway for regulation by lithium (Li) in low-K sheep red blood cells (LK SRBCs), and the nitric oxide (NO)/cGMP/protein kinase G (PKG) pathway as well as the platelet-derived growth factor (PDGF)-mediated mechanism in VSMCs. Studies on VSM transfected cells containing the PKG catalytic domain demonstrated the participation of this enzyme in K-Cl COT regulation. Commonly used vasodilators activate K-Cl COT in a dose-dependent manner through the NO/cGMP/PKG pathway. Interaction between the cotransporter and the cytoskeleton appears to depend on the cellular origin and experimental conditions. Pathophysiologically, K-Cl COT is altered in sickle cell anemia and neuropathies, and it has also been proposed to play a role in blood pressure control. Four closely related human genes code for KCCs (KCC1-4). Although considerable information is accumulating on tissue distribution, function and pathologies associated with the different isoforms, little is known about the genetic regulation of the KCC genes in terms of transcriptional and post-transcriptional regulation. A few reports indicate that the NO/cGMP/PKG signaling pathway regulates KCC1 and KCC3 mRNA expression in VSMCs at the post-transcriptional level. However, the detailed mechanisms of post-transcriptional regulation of KCC genes and of regulation of KCC2 and KCC4 mRNA expression are unknown. The K-Cl COT field is expected to expand further over the next decades, as new isoforms and/or regulatory pathways are discovered and its implication in health and disease is revealed.
    Full-text · Article · Nov 2004 · Journal of Membrane Biology
Show more