A rabbit model to tissue engineer the bladder

Department of Biochemistry, Radboud University Nijmegen, Nymegen, Gelderland, Netherlands
Biomaterials (Impact Factor: 8.56). 05/2004; 25(9):1657-61. DOI: 10.1016/S0142-9612(03)00519-2
Source: PubMed


A rabbit model was used for the evaluation of a collagen-based biomatrix of small intestinal submucosa (SIS, COOK) in comparison to a biochemically reconstructed biomatrix for bladder tissue regeneration. Rabbits underwent partial cystectomy and cystoplasty with SIS patch graft or with a biochemically defined collagen biomatrix. The grafts of the regenerated bladder wall were harvested at different intervals and tissue regeneration was evaluated. The results of the SIS and biochemically defined biomatrix grafts were comparable. At harvesting, we found five bladder stones and encrustation of the biomatrix in 21/56 animals. No stone formation was observed in the control group. The results of the molecularly defined biomatrix are thus far comparable to SIS. Both matrices show good epithelialization and ingrowth of smooth muscle cells. Both biomatrices show considerable encrustation, which appears to disappear in time. The rabbit model is suitable for bladder tissue engineering studies as it is an easy model to use. In this model, besides tissue regeneration, also some of the clinical problems are seen such as encrustation of foreign body material in the bladder. These aspects are subject for further pre-clinical studies in this animal model.

Download full-text


Available from: Jeannette Oosterwijk-Wakka, Sep 30, 2014
  • Source
    • "It has been suggested that encrustration is a result of high urate levels in rabbits [14]. And the encrustration all disappeared at last [15]. We suggest that encrustation might be the patch which was not degraded because encrustation was not noted in group B or C. Furthermore, we found that in group A the region of the patch surrounded by a large area of inflammatory polyp hyperplasia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Intestinal bladder augmentation has more disadvantages. One of the most promising alternative methods is tissue engineering in combination with surgical construction. Small intestine submucosa (SIS) is commonly used materials in tissue engineer. The aim of this study is determine the histologic and functional characteristics of SIS as bladder wall replacement in a rabbit augmentation model. Methods 18 New Zealand adult male rabbits, weight 2.5 ± 0.5Kg, were used in this study. The rabbits were divided into 3 groups of 6 based on the number of days post-operative (A, 4 weeks; B, 12 weeks; C, 24 weeks). All of the animals underwent urodynamic testing under anesthesia before cystoplasty with SIS patch. The cystometrograms were repeated 4, 12, and 24 weeks after surgery with the same method. SIS-regenerated bladder strips (10 × 3 × 3 mm) and normal bladder strips (10 × 3 × 3 mm) from the same bladder were obtained at 4, 12, and 24 weeks for in vitro detrusor strip study. The frequency and amplitude of the strip over 15 min was recorded. The regenerated tissue and normal tissue underwent histologic and immunocytochemical analysis. The results were quantified as optical density (OD) values. Results Histologically, the SIS-regenerated bladders of group C (24 weeks post-operation) resembled normal bladder in that all 3 layers (mucosa with submucosa, smooth muscle, and serosa) were present. In the in vitro detrusor strip study, there were no significant differences in autorhythmicity and contractility between regenerated and normal tissues in group C (p > 0.05). Immunohistochemical analysis indicated that the quantity of A-actin grew to a normal level. Urodynamic testing showed that compliance remained stable in all groups post-operatively, and the volume increased 24 weeks post-operatively. Conclusion Regenerated tissue has similar histologic and functional characteristics. SIS seems to be a viable material in the reconstruction of the rabbit urinary bladder.
    Full-text · Article · Aug 2014 · BMC Urology
  • Source

    Preview · Article ·
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical constants, √ε=n-jk, of the anisotropic and absorptive liquids, i.e., liquid crystal and magnetic fluid, were evaluated by reflectometry in the visible and infrared spectral regions. Semicylindrical prisms were prepared with high-index glass or CsI (cesium iodide) crystal to measure the angular dependence of the attenuated total reflection (ATR) on the sample liquid.
    No preview · Conference Paper · Feb 2002
Show more