Secreted transforming growth factor 2 activates NF- B, blocks apoptosis, and is essential for the survival of some tumor cells

Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 06/2004; 101(18):7112-7. DOI: 10.1073/pnas.0402048101
Source: PubMed


The basis of constitutive activation of NF-kappaB, essential for survival and resistance to apoptosis in many tumors, is not well understood. We find that transforming growth factor beta2 (TGFbeta2), predominantly in its latent form, is secreted by several different types of tumor cell lines that exhibit constitutively active NF-kappaB and that TGFbeta2 potently stimulates the activation of NF-kappaB in reporter cells. Suppression of TGFbeta2 expression by small interfering RNA kills prostate cancer PC3 cells, indicating that the TGFbeta2-NF-kappaB pathway is important for their viability. These findings identify TGFbeta2 as a potential target for therapeutic strategies to inhibit the growth of tumor cells that depend on constitutively active NF-kappaB, or to sensitize them to treatment with cytotoxic drugs.

Download full-text


Available from: Andrei Gudkov
  • Source
    • "Given that osteoblasts constitutively express NLRP3 and ASC, and the finding that NLRP3 can associate with ASC to elicit caspase-1 (Gumucio et al., 2002; Dowds et al., 2004; Kanneganti et al., 2006; Mariathasan et al., 2006) and perhaps caspase-8 activation (Hasegawa et al., 2005), enzymes that demonstrate elevated activity in osteoblasts following bacterial challenge (Marriott et al., 2002; Alexander et al., 2003), this cytosolic NLR may represent an important mechanism underlying osteoblast apoptosis following exposure to intracellular bacterial pathogens. This hypothesis is supported by our observation that Salmonella-induced decreases in NF-kB activity are markedly attenuated in osteoblasts following siRNA-induced NLRP3 knockdown (McCall et al., 2008), since this transcription factor has been reported to mediate anti-apoptotic effects in a variety of cell types (You et al., 2001; Lu et al., 2004; Munshi et al., 2004). Furthermore, we have shown that Salmonella-induced caspase-1 activation is absent in osteoblasts derived from NLRP3 deficient animals (McCall et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms underlying the destruction of bone tissue in osteomyelitis are only now being elucidated. While some of the tissue damage associated with osteomyelitis likely results from the direct actions of bacteria and infiltrating leukocytes, perhaps exacerbated by bacterial manipulation of leukocyte survival pathways, infection-induced bone loss predominantly results from an uncoupling of the activities of osteoblasts and osteoclasts. Bacteria or their products can directly increase osteoclast formation and activity, and the inflammatory milieu at sites of infection can further promote bone resorption. In addition, osteoclast activity is critically regulated by osteoblasts that can respond to bacterial pathogens and foster both inflammation and osteoclastogenesis. Importantly, bone loss during osteomyelitis is also brought about by a decline in new bone deposition due to decreased bone matrix synthesis and by increased rates of osteoblast apoptosis. Extracellular bacterial components may be sufficient to reduce osteoblast viability, but the causative agents of osteomyelitis are also capable of inducing continuous apoptosis of these cells by activating intrinsic and extrinsic cell death pathways to further uncouple bone formation and resorption. Interestingly, bacterial internalization appears to be required for maximal osteoblast apoptosis, and cytosolic inflammasome activation may act in concert with autocrine/paracrine death receptor-ligand signaling to induce cell death. The manipulation of apoptotic pathways in infected bone cells could be an attractive new means to limit inflammatory damage in osteomyelitis. However, the mechanism that is the most important in bacterium-induced bone loss has not yet been identified. Furthermore, it remains to be determined whether the host would be best served by preventing osteoblast cell death or by promoting apoptosis in infected cells.
    Full-text · Article · Dec 2013 · Frontiers in Cellular and Infection Microbiology
  • Source
    • "TGF-β, a multifunctional cytokine, has been shown to increase the survival and proliferation of transformed prostate epithelial cells and is found at elevated levels in the serum of human CaP patients with metastatic disease.93,94 Loss of TGF-β type I and II receptors on transformed human prostate epithelial cells correlates inversely with tumor grade and may allow escape from TGF-β-mediated growth regulation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Benign prostatic hyperplasia and prostate cancer remain the most prevalent urologic health concerns affecting elderly men in their lifetime. Only 20% of benign prostatic hyperplasia and prostate cancer cases coexist in the same zone of the prostate and require a long time for initiation and progression. While the pathogenesis of both diseases is not fully understood, benign prostatic hyperplasia and prostate cancer are thought to have a multifactorial etiology, their incidence and prevalence are indeed affected by age and hormones, and they are associated with chronic prostatic inflammation. At least 20% of all human malignancies arise in a tissue microenvironment dominated by chronic or recurrent inflammation. In prostate malignancy, chronic inflammation is an extremely common histopathologic finding; its origin remains a subject of debate and may in fact be multifactorial. Emerging insights suggest that prostate epithelium damage potentially inflicted by multiple environmental factors such as infectious agents, dietary carcinogens, and hormones triggers procarcinogenic inflammatory processes and promotes cell transformation and disease development. Also, the coincidence of chronic inflammation and tumorigenesis in the peripheral zone has recently been linked by studies identifying so-called proliferative inflammatory atrophy as a possible precursor of prostatic intraepithelial neoplasia and prostate cancer. This paper will discuss the available evidence suggesting that chronic inflammation may be involved in the development and progression of chronic prostatic disease, although a direct causal role for chronic inflammation or infection in prostatic carcinogenesis has yet to be established in humans. Further basic and clinical research in the area, trying to understand the etiology of prostatic inflammation and its signaling pathway may help to identify new therapeutic targets and novel preventive strategies for reducing the risk of developing benign and malignant tumors of the prostate.
    Preview · Article · Dec 2012 · Research and Reports in Urology
  • Source
    • "γ-Tocotrienol inhibits the expression of TGFβ2 in PC-3 cells As GT3 demonstrated only partial dependence on PPAR-γ expression for cell growth arrest, we began to examine the possibility that GT3 modulates additional pathways to suppress the growth of the PC-3 cells. Lu et al. had demonstrated that TGFβ2 plays a role in the survival of PC-3 cells and, through knockout of TGFβ2, NF-κB was also diminished, resulting in inhibition of proliferation of PC-3 cells [27]. We were interested in determining if GT3 could modulate the expression TGFβ2 in PC-3 cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Regions along the Mediterranean and in southern Asia have lower prostate cancer incidence compared to the rest of the world. It has been hypothesized that one of the potential contributing factors for this low incidence includes a higher intake of tocotrienols. Here we examine the potential of γ-tocotrienol (GT3) to reduce prostate cancer proliferation and focus on elucidating pathways by which GT3 could exert a growth-inhibitory effect on prostate cancer cells. We find that the γ and δ isoforms of tocotrienol are more effective at inhibiting the growth of prostate cancer cell lines (PC-3 and LNCaP) compared with the γ and δ forms of tocopherol. Knockout of PPAR-γ and GT3 treatment show inhibition of prostate cancer cell growth, through a partially PPAR-γ-dependent mechanism. GT3 treatment increases the levels of the 15-lipoxygenase-2 enzyme, which is responsible for the conversion of arachidonic acid to the PPAR-γ-activating ligand 15-S-hydroxyeicosatrienoic acid. In addition, the latent precursor and the mature forms of TGFβ2 are down-regulated after treatment with GT3, with concomitant disruptions in TGFβ receptor I, SMAD-2, p38, and NF-κB signaling.
    Full-text · Article · Feb 2011 · Free Radical Biology and Medicine
Show more