Overexpression of human KCNA5 increases IK(V) and enhances apoptosis

ArticleinAJP Cell Physiology 287(3):C715-22 · October 2004with12 Reads
DOI: 10.1152/ajpcell.00050.2004 · Source: PubMed
Apoptotic cell shrinkage, an early hallmark of apoptosis, is regulated by K+ efflux and K+ channel activity. Inhibited apoptosis and downregulated K+ channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in development of pulmonary vascular medial hypertrophy and pulmonary hypertension. The objective of this study was to test the hypothesis that overexpression of KCNA5, which encodes a delayed-rectifier voltage-gated K+ (Kv) channel, increases K+ currents and enhances apoptosis. Transient transfection of KCNA5 caused 25- to 34-fold increase in KCNA5 channel protein level and 24- to 29-fold increase in Kv channel current (I(K(V))) at +60 mV in COS-7 and rat PASMC, respectively. In KCNA5-transfected COS-7 cells, staurosporine (ST)-mediated increases in caspase-3 activity and the percentage of cells undergoing apoptosis were both enhanced, whereas basal apoptosis (without ST stimulation) was unchanged compared with cells transfected with an empty vector. In rat PASMC, however, transfection of KCNA5 alone caused marked increase in basal apoptosis, in addition to enhancing ST-mediated apoptosis. Furthermore, ST-induced apoptotic cell shrinkage was significantly accelerated in COS-7 cells and rat PASMC transfected with KCNA5, and blockade of KCNA5 channels with 4-aminopyridine (4-AP) reduced K+ currents through KCNA5 channels and inhibited ST-induced apoptosis in KCNA5-transfected COS-7 cells. Overexpression of the human KCNA5 gene increases K+ currents (i.e., K+ efflux or loss), accelerates apoptotic volume decrease (AVD), increases caspase-3 activity, and induces apoptosis. Induction of apoptosis in PASMC by KCNA5 gene transfer may serve as an important strategy for preventing the progression of pulmonary vascular wall thickening and for treating patients with idiopathic pulmonary arterial hypertension (IPAH).

Do you want to read the rest of this article?

November 2002 · AJP Cell Physiology
    Cell shrinkage is an early prerequisite for apoptosis. The apoptotic volume decrease is due primarily to loss of cytoplasmic ions. Increased outward K+ currents have indeed been implicated in the early stage of apoptosis in many cell types. We found that cytoplasmic dialysis of cytochrome c (cyt-c), a mitochondria-dependent apoptotic inducer, increases K+ currents before inducing nuclear... [Show full abstract]
      Nitric oxide (NO) is an endogenous endothelium-derived relaxing factor that regulates vascular smooth muscle cell proliferation and apoptosis. This study investigated underlying mechanisms involved in NO-induced apoptosis in human and rat pulmonary artery smooth muscle cells (PASMC). Exposure of PASMC to NO, which was derived from the NO donor S-nitroso-N-acetyl-penicillamine, increased the... [Show full abstract]
      August 2001 · AJP Cell Physiology
        Cell shrinkage is an incipient hallmark of apoptosis in a variety of cell types. The apoptotic volume decrease has been demonstrated to attribute, in part, to K+ efflux; blockade of plasmalemmal K+ channels inhibits the apoptotic volume decrease and attenuates apoptosis. Using combined approaches of gene transfection, single-cell PCR, patch clamp, and fluorescence microscopy, we examined... [Show full abstract]
          The balance between apoptosis and proliferation in pulmonary artery smooth muscle cells (PASMCs) is important in maintaining normal pulmonary vascular structure. Activity of voltage-gated K(+) (K(V)) channels has been demonstrated to regulate cell apoptosis and proliferation. Treatment of PASMCs with staurosporine (ST) induced apoptosis in PASMCs, augmented K(V) current [I(K(V))], and induced... [Show full abstract]
          July 2003 · AJP Cell Physiology
            Cell shrinkage is an early prerequisite in programmed cell death, and cytoplasmic K(+) is a dominant cation that controls intracellular ion homeostasis and cell volume. Blockade of K(+) channels inhibits apoptotic cell shrinkage and attenuates apoptosis. We examined whether apoptotic repressor with caspase recruitment domain (ARC), an antiapoptotic protein, inhibits cardiomyocyte apoptosis by... [Show full abstract]
            Discover more