In vivo function of the conserved non-catalytic domain of Werner syndrome helicase in DNA replication

ArticleinHuman Molecular Genetics 13(19):2247-61 · November 2004with4 Reads
Impact Factor: 6.39 · DOI: 10.1093/hmg/ddh234 · Source: PubMed

    Abstract

    Werner syndrome is a genetic disorder characterized by genomic instability, elevated recombination and replication defects. The WRN gene encodes a RecQ helicase whose function(s) in cellular DNA metabolism is not well understood. To investigate the role of WRN in replication, we examined its ability to rescue cellular phenotypes of a yeast dna2 mutant defective in a helicase-endonuclease that participates with flap endonuclease 1 (FEN-1) in Okazaki fragment processing. Genetic complementation studies indicate that human WRN rescues dna2-1 mutant phenotypes of growth, cell cycle arrest and sensitivity to the replication inhibitor hydroxyurea or DNA damaging agent methylmethane sulfonate. A conserved non-catalytic C-terminal domain of WRN was sufficient for genetic rescue of dna2-1 mutant phenotypes. WRN and yeast FEN-1 were reciprocally co-immunoprecipitated from extracts of transformed dna2-1 cells. A physical interaction between yeast FEN-1 and WRN is demonstrated by yeast FEN-1 affinity pull-down experiments using transformed dna2-1 cells extracts and by ELISA assays with purified recombinant proteins. Biochemical analyses demonstrate that the C-terminal domain of WRN or BLM stimulates FEN-1 cleavage of its proposed physiological substrates during replication. Collectively, the results suggest that the WRN-FEN-1 interaction is biologically important in DNA metabolism and are consistent with a role of the conserved non-catalytic domain of a human RecQ helicase in DNA replication intermediate processing.