ArticleLiterature Review

The role of profilin complexes in cell motility and other cellular processes

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Profilins are small actin-binding proteins that are essential in all organisms that have been examined to date. In vitro, profilins regulate the dynamics of actin polymerization, which is their key role in vivo during cell motility. However, there is growing evidence that, apart from actin binding, profilins function as hubs that control a complex network of molecular interactions. Profilins interact with a plethora of proteins and the importance of this aspect of their function is just beginning to be understood. In this article, I will summarize recent findings in mammalian cells and mice, and discuss the evidence of a role for profilins in cellular processes such as membrane trafficking, small-GTPase signaling and nuclear activities, in addition to neurological diseases and tumor formation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... Pro lins (PFNs) are conserved small actin-binding proteins that are essential in all organisms examined to date, including animals, plants, and vaccinia viruses [5,6]. The actin system of the archaea Asgardia was found to be regulated by eukaryotic PFNs, in a study on the origin of eukaryotes [7,8]. ...
... PFNs contain actin-binding, phosphatidylinositol-binding, and proline-rich domains, which enable PFNs to interact with many proteins [9,10]. These PFN protein interactors are highly heterogeneous, including nuclear export receptors, endocytosis regulators, Rac and Rho effector molecules, and putative transcription factors [5], indicating that PFNs have varied biological functions that are still unresolved. ...
... PFN2 consists of seven beta chains and four alpha helices and has three binding domains: the actin, poly-L-proline, and phosphatidylinositol 4,5-diphosphate-binding domains. Through its poly-L-proline domain, PFN2 interacts with many proteins, including ROCK and dynamin-1 [5]. Hundreds of potential PFN2 interactors were detected in our co-IP combined with LC-MS/MS assay, which were highly heterogeneous. ...
Preprint
Full-text available
Profilin 2 (PFN2) is an actin-binding protein important for cancer initiation and progression. However, the function and precise role of PFN2 in non-small cell lung cancer (NSCLC) remain unclear. Here, we assessed the expression levels of PFN2 in tissue from patients with NSCLC; identified binding partners using mass spectrometry, co-immunoprecipitations, and molecular modeling; and studied the angiogenic-promoting function of PFN2 using 3D droplet cultures and tube-formation assays. We found that upregulated PFN2 expression is associated with poor prognosis in patients with NSCLC. Knockdown of PFN2 significantly impaired the proliferation and angiogenesis of NSCLC cells, both in vivo and in vitro. Mechanistically, PFN2 physically interacts with pyruvate kinase M2 (PKM2) and modulates extracellular-signal regulated kinase 1/2 (ERK1/2)-mediated phosphorylation of PKM2 at S37, which substantially increases its nuclear translocation. PFN2 knockdown lead to reduced expression of PKM2, p65-NF-κB, and hypoxia-inducible factor (HIF)-1α and inhibited the nuclear translocation of PKM2. This resulted in impaired formation of the PKM2-HIF-1α-p65-NF-κB transcription complex, leading to decreased expression of its downstream target genes VEGFA , CCND1 , and MAP2K5 . Moreover, mutations in PFN2 at Y134 or S138 impaired its binding to PKM2, nuclear translocation of PKM2, and functionally inhibited angiogenesis in lung cancer cells. Overall, our data provide insights into the role of PFN2 in the regulation of lung cancer angiogenesis and indicate that PFN2 may serve as a therapeutic target against NSCLC.
... 1). Proteins from the profilin family are actin-binding proteins that participate in the assembly and regulation of F-actin (Witke, 2004;Krishnan & Moens, 2009;Davey & Moens, 2020). The VACV profilin-homology protein (VACV A42R), which is 98% identical to MPXV A42R (Fig. 1), is a late-expressing viral protein with a weak affinity for actin (Blasco et al., 1991;Machesky et al., 1994). ...
... In addition to their interaction with actin and PIP2, profilins bind to actin-associated proteins and other cellular proteins (Kaiser & Pollard, 1996;Witke, 2004;Davey & Moens, 2020). Many of these interactions are through the poly(l-proline) region formed by the N-and C-terminal helices, and the binding of proteins with proline-repeat domains is regulated by the phosphorylation of a serine located on the C-terminal helix (Davey & Moens, 2020). ...
... Finally, ECTV A42R has been shown to bind and colocalize with cellular tropomyosin, a protein that polymerizes along actin filaments to regulate the binding of actinassociated proteins to the filaments (Butler-Cole et al., 2007). Tropomyosin has not been recognized as a ligand of human profilins (Witke, 2004;Davey & Moens, 2020). Although the regions of the ECTV A42R protein that bind tropomyosin are not yet known, this finding indicates that poxvirus profilin-like proteins may engage in unique protein-protein interactions and regulate actin in a distinct manner from human profilins. ...
Article
Full-text available
The infectious disease human monkeypox is spreading rapidly in 2022, causing a global health crisis. The genomics of Monkeypox virus (MPXV) have been extensively analyzed and reported, although little is known about the virus-encoded proteome. In particular, there are no reported experimental MPXV protein structures other than computational models. Here, a 1.52 Å resolution X-ray structure of the MPXV protein A42R, the first MPXV-encoded protein with a known structure, is reported. A42R shows structural similarity to profilins, which are cellular proteins that are known to function in the regulation of actin cytoskeletal assembly. However, structural comparison of A42R with known members of the profilin family reveals critical differences that support prior biochemical findings that A42R only weakly binds actin and does not bind poly(L-proline). In addition, the analysis suggests that A42R may make distinct interactions with phosphatidylinositol lipids. Overall, the data suggest that the role of A42R in the replication of orthopoxviruses may not be readily determined by comparison to cellular profilins. Furthermore, these findings support the need for increased efforts to determine high-resolution structures of other MPXV proteins to inform physiological studies of the poxvirus infection cycle and to reveal potential new strategies to combat human monkeypox should this emerging infectious disease with pandemic potential become more common in the future.
... Proteins from the profilin family are actin-binding proteins that participate in F-actin assembly and regulation. [12][13][14] The VACV profilin-homology protein (VACV A42R), which is 98% identical to the MPXV A42R ( Figure 1A), is a late expressing viral protein 15 with weak affinity for actin (19). A peptide of VACV A42R ( 88 YAPVSPIVI 96 ) is a CD8+ T cell epitope. ...
... In addition to interaction with actin and PIP2, profilins bind to actin-associated proteins and other cellular proteins. 13,14,28 Many of these interactions are through the poly(L-proline) interaction region formed by the N-and Cterminal helices and the binding of proteins with proline repeat domains is regulated by phosphorylation of a serine located on the C-terminal helix. 14 However, VACV A42R does not bind poly(L-proline) 22 although the poxvirus profilin-like proteins do have a threonine (Thr131) at the position of the phosphorylated serine. ...
... 21 Tropomyosin has not been recognized as ligand for human profilins. 13,14 Although the regions of the ECTV A42R protein that bind tropomyosin are not yet known, this finding indicates that poxvirus profilin-like proteins may engage in unique protein-protein interactions and regulate actin in a manner distinct from human profilins. A42R structure is highly conserved across the Orthopoxviruses. ...
Preprint
Full-text available
The infectious disease human monkeypox is spreading rapidly in 2022 causing a global health crisis. The genomics of the monkeypox virus (MPXV) have been extensively analyzed and reported, although little is known about the virus-encoded proteome. In particular, there is almost no structure information about MPXV proteins, other than computational models. Here we report a 1.52 angstrom x-ray structure of the MPXV protein A42R, the only MPXV-encoded protein with a known structure. This protein shows sequence similarity to profilins, which are cellular proteins known to function in regulation of actin cytoskeletal assembly. However, structural comparison of the A42R with known members of the profilin family reveals critical differences that support prior biochemical findings that this protein only weakly binds actin and does not bind poly(L-proline). In addition, the analysis suggests that this protein may have distinct interactions with phosphatidylinositol lipids. Overall, our data suggest that the role of A42R in replication of orthopoxviruses may not be easily determined by comparison to cellular profilins. Further, our findings support a need for increased efforts to determine high-resolution structures of other MPXV proteins to inform physiological studies of the poxvirus infection cycle and to reveal potential new strategies to combat human monkeypox should the infection become more common in the future.
... and Delta (B.1.617) completed in 2.3.1, and M Pro (PDB ID: 6LU7) [3], NRPI (PDB ID: 6FMC) [32], PNF1 (PDB ID: 3NUL) [33] from the RCSB protein database. Small-molecule ligands of forsythoside A (CID: 5281773), forsythoside E (CID: 69634125), veklury (CID: 121304016), chlorogenic acid (CID: 1794427), phillyrin (CID: 101712), umifenovir (CID: 131411), and hydroxychloroquine (CID: 12947) were obtained from NCBI database (http://www.ncbi.nlm.nih. ...
... PFN1 is thought to be the target molecule of AGEs-induced endothelial cell damage. Previous studies have shown that some small ligand molecules can regulate actin polymerization by binding PFN1 [33]. In this study, the interaction of forsythoside A, forsythoside E, chlorogenic acid, and hydroxychloroquine with PFN1 was studied through molecular docking analysis for clarifying the potential mechanism of their protection against AGEs induced endothelial cell injury. ...
... In addition, PFN1 mainly binds actin monomers to form the actin cytoskeleton. When the receptor scaffold binds to the ligand, this process affects its integrity and endocytosis [33]. This suggested that forsythoside A may protect against endothelial cell injury by binding to PFN1 to prevent or improve the recombination and redistribution of the endothelial cytoskeleton. ...
Article
Diabetes is considered to be one of the diseases most associated with COVID-19. In this study, interfering effects and potential mechanisms of several compounds from Lianqiao (Forsythia suspensa (Thunb.) Vahl) leaves on the bioactivities of some key proteins of COVID-19 and its variants, as well as diabetic endothelial dysfunctions were illuminated through in vitro and in silico analyses. Results showed that, among the main ingredients in the leaves, forsythoside A showed the strongest docking affinities with the proteins SARS-CoV-2-RBD-hACE2 of COVID-19 and its variants (Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617)), as well as neuropilin-1 (NRP1), and SARS-CoV-2 main protease (MPro) to interfere coronavirus entering into the human body. Moreover, forsythoside A was the most stable in binding to receptors in Delta (B.1.617) system. It also has good antiviral activities and drug properties and has the strongest binding force to the RBD domain of COVID-19. In addition, forsythoside A reduced ROS production in AGEs-induced EA.hy926 cells, maintained endothelial integrity, and bound closely to protein profilin-1 (PFN1) receptor. This work may provide useful knowledge for further understanding the interfering effects and potential mechanisms of compounds, especially forsythoside A, from Lianqiao leaves on the bioactivities of key proteins of COVID-19/variants in diabetes.
... Microtubule is nucleated from the γ-tubulin ring complex and then assembled into hollow cylindrical polymers with α/β-tubulin heterodimers [17]. Although initially identified as an actin-sequestering protein, increasing evidence suggests that profilins bind to specific polyproline-rich regions in other actin-regulatory proteins [18], such as formins and Srv2 [19,20]. In recent years, profilin has been shown to contain specific residues that enable its direct interaction with microtubules [21]. ...
... Increasing evidence suggests that in addition to binding actin, profilins also bind to specific polyproline-rich regions in other actin-regulated proteins, and serve as hubs for controlling complex molecular interaction networks [18], such as formins and Srv2 [19,20]. Recently, new research has found that profilins promote the coordination of actin and microtubule systems and modulate microtubule dynamics formins-mediated indirect interaction [30]. ...
Article
Full-text available
Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgβ2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 μg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.
... The PFN1 gene, which comprises 3 exons and is located at 17p13.3, encodes the protein Profilin 1, which has 140 amino acids and is highly conserved in evolution. Profilin 1 is a small-acting monomer-binding protein and considered to be a fundamental control element for cell migration and actin polymerization [10,11]. It is widely expressed in almost all cells, organs, and tissues with exception of skeletal muscle throughout the body and is engaged in multiple cell activities, such as cytoskeletal tissue activity, cell cycle regulation, membrane trafficking, and the processes involving mRNA [10,[12][13][14][15][16]. ...
... Profilin 1 is a small-acting monomer-binding protein and considered to be a fundamental control element for cell migration and actin polymerization [10,11]. It is widely expressed in almost all cells, organs, and tissues with exception of skeletal muscle throughout the body and is engaged in multiple cell activities, such as cytoskeletal tissue activity, cell cycle regulation, membrane trafficking, and the processes involving mRNA [10,[12][13][14][15][16]. ...
Article
Full-text available
Recent studies have discovered an association between the PFN1 gene and Paget’s disease. However, it is currently unknown whether the PFN1 gene is related to osteoporosis. This study was performed to investigate the association of Single-Nucleotide Polymorphisms (SNPs) in the PFN1 gene with Bone Mineral Density (BMD) as well as bone turnover markers and osteoporotic fractures in Chinese subjects. A total of 2836 unrelated Chinese subjects comprising 1247 healthy subjects and 1589 osteoporotic fractures patients (Fracture group) were enrolled in this study. Seven tagSNPs (rs117337116, rs238243, rs6559, rs238242, rs78224458, rs4790714, and rs13204) of the PFN1 gene were genotyped. The BMD of the lumbar spine 1–4 (L1-4), femoral neck, and total hip as well as bone turnover markers, such as β-C-Terminal telopeptide of type 1 collagen (β-CTX) and Procollagen type 1 N-terminal Propeptide (P1NP), were measured. The association between 7 tagSNPs and BMD and bone turnover markers was analyzed in 1247 healthy subjects only. After age matching, we selected 1589 osteoporotic fracture patients (Fracture group) and 756 nonfracture controls (Control group, selected from 1247 healthy subjects) for a case–control study, respectively. For the case–control study, we used logistic regression to investigate the relationship between 7 tagSNPs and osteoporotic fractures risk. In the All group, the PFN1 haplotype GAT was associated with the β-CTX (P = 0.007). In the Female group, the PFN1 haplotype GAT was associated with the β-CTX (P = 0.005). In the Male group, the rs13204, the rs78224458, and the PFN1 haplotype GAC were associated with the BMD of the L1-4 (all P = 0.012); the rs13204, the rs78224458, and the PFN1 haplotype GAC were associated with the BMD of the femoral neck (all P = 0.012); the rs13204 and rs78224458 were associated with the BMD of the total hip (both P = 0.015); and the PFN1 haplotype GAT was associated with the β-CTX (P = 0.013). In the subsequent case–control study, the rs13204 and rs78224458 in the male group were associated with the risk of L1-4 fracture (P = 0.016 and 0.010, respectively) and total hip fracture (P = 0.013 and 0.016, respectively). Our study reveals that PFN1 gene polymorphisms are associated with BMD in Chinese males and β-CTX in Chinese people and confirmed the relationship between PFN1 gene polymorphisms and Chinese male osteoporotic fractures in a case–control study.
... Profilin is a key regulator of actin dynamics that plays a central role in almost all vital cellular processes, including endocytosis, motility, signal transduction, metabolism, cell division, etc. [1][2][3]. It is a 16kDa actin-binding protein that has been recognized as one of the crucial proteins for cell survival [4]. ...
... Profilin is a ubiquitous actin-binding protein present in all eukaryotic cells, including unicellular eukaryotic organisms, such as Plasmodium, Toxoplasma, Acanthamoeba Dictyostelium, Tetrahymena, etc. It plays an important role in a number of cellular activities such as cell growth, intracellular trafficking, gene transcription, cell division, cell signalling, etc. [1][2][3][4][5][6]. Profilin has been suggested to be vital for the invasive blood stage Plasmodium falciparum and its complete deletion has been shown to have severe effects on viability of the parasites [37,38]. ...
Article
Full-text available
Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania . However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn +/- ) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn +/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn +/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.
... PFN1 is considered the target molecule of endothelial cell damage induced by AGEs [6]. Some dietary flavonoids have been proven to reduce vascular complications caused by AGEs by selectively binding RAGE and PFN1 [32,33]. The binding degree of small molecule ligands to receptors can also reflect their protective effect to a certain extent and can be used to explain the difference in the protection of different small-molecule ligands [34]. ...
... The major role of PFN1 has been reported as binding actin monomers to form actin cytoskeleton. Such a process will affect the integrity and endocytosis of the receptor scaffold when it is bound by a ligand [33]. A previous study pointed out that flavonoids may prevent or improve the reorganization and redistribution of the endothelial cytoskeleton by binding to PFN1 [6]. ...
Article
Full-text available
The aim of this study was to compare the protective effects of three dietary flavonoids (apigenin-7-O-glucoside (A7G), isorhamnetin-3-O-rutinoside (I3R), and cyanidin-3-O-glucoside (C3G)) on advanced glycation end products (AGEs)-induced inflammation and vascular endothelial dysfunction. Furthermore, the potential mechanisms of varied effects of those three dietary flavonoids were analyzed by molecular docking analysis. Results showed that C3G (40 µM) achieved the best inhibition on inflammatory cytokines (TNF-α, IL-1β, and IL-6) in AGEs-induced RAW264.7 cells, followed by I3R, and A7G was the weakest. The molecular docking results also showed that C3G exhibited the closest binding with the receptor for AGE. However, I3R (40 µM) demonstrated the best effect in improving endothelial dysfunction in AGEs-induced EA.hy926 cells, followed by C3G, and A7G was the weakest, as evidenced by the molecular docking results of flavonoids with profilin-1. This work may provide knowledge and helpful suggestions regarding the benefits of dietary flavonoids in diabetic vascular complications.
... These effects of HC-HA/PTX3 were prevented by a bath application of latrunculin-A (LAT-A, 1 μM, Fig 5A, B), an actin polymerization inhibitor that compromises the integrity of the cytoskeleton.(39) Moreover, knocking down of profilin-1 (Pfn1), an essential element for promoting actin polymerization, (40,41) by electroporating DRG neurons with siRNA specifically targeting Pfn1 (siPfn1) also diminished HC-HA/PTX3-induced cytoskeletal rearrangement ( Fig 5D). ...
Preprint
Full-text available
Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain and, more importantly, preventing its transition to a chronic state. In a mouse model of post-surgical pain, local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. Importantly, preemptive drug treatment also inhibited the transition of post-surgical pain to a prolonged state. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways, and indirect pain relief by attenuating immune cell recruitment. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO- induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3 induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain and unravel the underlying mechanisms.
... The MPXV gp153 locus encodes the A42R protein, which shares significant amino acid sequence identity with eukaryotic cell profilin proteins. These profilins are members of the family of actin-binding proteins that participate in F-actin assembly and regulation 36,90 . Comparing the structures of A42R and well-known cellular profilins revealed crucial distinctions. ...
Preprint
Full-text available
Mpox (previously known as Monkeypox) is an infectious disease caused by the monkeypox virus that can be lethal and is a serious hazard to public health. Despite various efforts to develop effective drugs and vaccines, presently there are relatively few antiviral therapeutics available specific to the disease. The knowledge of the possible drug targets in the Mpox proteome can enhance the to develop specific drugs tailored to specific needs. With this objective, the present study uses various computational approaches to identify and analyze putative therapeutic targets within the Mpox viral proteome. A total of 33 promising drug targets were identified that are critical for the survival and replication of the virus following an in-depth analysis of the proteome of the Mpox virus. Using an array of computational explorations, the structural and functional characteristics of the identified drug targets were analyzed to gain insights into their mechanisms of action. Our findings indicate that several identified therapeutic targets have the potential for the development of effective treatments against the Mpox virus. In conclusion, this study provides a comprehensive computational analysis of the Mpox viral proteome, identifying prospective therapeutic targets for disease treatment. These findings are critical for developing novel antiviral treatments for this highly infectious and potentially lethal virus.
... The most important function of Profilin is to renew the ATP-actin pool in platelets by providing ADP-ATP nucleotide exchange in G-actin [50]. The Profilin-1-ATP-actin complex interacts with the rapidly elongating actin filament and leads to the release of the ATP-actin monomer, allowing actin to participate in the filament structure [51]. Sritt et al. demonstrated that Profilin-1 knock-out platelets showed severely delayed and less effective clot retraction, reflecting impaired integrin function and actin dynamics [27]. ...
Article
Full-text available
Pseudoexfoliation syndrome (PEX) is characterized by the accumulation of abnormal extracellular matrix material in ocular and non-ocular tissues, including blood vessel walls. Clot-forming dysfunction might be responsible for venous thrombosis in PEX. We investigated global coagulation, the proteome, and functions of platelets in PEX patients and aimed to determine prognostic biomarkers for thrombosis risk in PEX. Peripheral blood was collected from PEX and retinal vein occlusion (RVO) patients, and age–sex matched controls. Viscoelastic hemostasis was evaluated by rotational thromboelastometry (ROTEM). Platelet markers (CD41, CD42, CD61, and CD62p) and endothelial markers (P-selectin, E-selectin, and von Willebrand factor) were investigated by flow cytometry and ELISA, respectively. The platelet proteome was analyzed by 2D fluorescence difference gel electrophoresis followed by mass spectrometry. Clot formation time (CFT) is significantly reduced in PEX patients compared to the controls (p < 0.05). P-selectin levels were higher in PEX patients than in controls (p < 0.05); E-selectin and von Willebrand factor remained unchanged. The monitorization of CFT by ROTEM, and soluble P-selectin, may help assess thrombotic risk in PEX patients. Proteomic analysis revealed differential expression of Profilin-1 in platelets. Profilin-1 regulates the stability of actin-cytoskeleton and may contribute to impaired platelet hemostatic functions. Increased P-selectin levels together with impaired coagulation dynamics might be responsible for the thrombotic events in PEX disease.
... Fluorescence intensity statistics indicated higher F-actin fluorescence and weaker G-actin fluorescence in Tβ4-knockdown iTECs, with the opposite observed in Tβ4-overexpression iTECs. Profilins, small actin-binding proteins, compete directly with Tβ4 for actin binding [43,44]. Western Blot results revealed a significant decrease in PROFILIN-2 level in Tβ4-knockdown iTECs. ...
Article
Full-text available
The thymus is one of the most crucial immunological organs, undergoing visible age-related shrinkage. Thymic epithelial cells (TECs) play a vital role in maintaining the normal function of the thymus, and their degeneration is the primary cause of age-induced thymic devolution. Thymosin β4 (Tβ4) serves as a significant important G-actin sequestering peptide. The objective of this study was to explore whether Tβ4 influences thymocyte differentiation by regulating the cytoskeletal rearrangement and mitochondrial transfer of TECs. A combination of H&E staining, immunofluorescence, transmission electron microscopy, RT-qPCR, flow cytometry, cytoskeletal immunolabeling, and mitochondrial immunolabeling were employed to observe the effects of Tβ4 on TECs’ skeleton rearrangement, mitochondrial transfer, and thymocyte differentiation. The study revealed that the Tβ4 primarily regulates the formation of microfilaments and the mitochondrial transfer of TECs, along with the formation and maturation of double-negative cells (CD4−CD8−) and CD4 single-positive cells (CD3+TCRβ+CD4+CD8−) thymocytes. This study suggests that Tβ4 plays a crucial role in thymocyte differentiation by influencing the cytoskeletal rearrangement and mitochondrial transfer of TECs. These effects may be associated with Tβ4’s impact on the aggregation of F-actin. This finding opens up new avenues for research in the field of immune aging.
... These studies, using transgenic rodent paradigms, underscore that the observed disease phenotypes emanate primarily from the specific pathogenic mutation in PFN1 rather than a mere augmentation of its expression. PFN1, as a key orchestrator of cytoskeletal dynamics, cellular motility, endocytic processes, and synaptic integrity, assumes a critical role in fundamental neuronal functions (Witke, 2004;Taylor et al., 2016). Compellingly, the ablation of PFN1 in murine knockout (KO) models engenders developmental anomalies (Witke et al., 2001); however, the deficiency of PFN1 in mature mice does not culminate in appreciable neuropathological sequelae (Görlich et al., 2012). ...
Article
Full-text available
Accumulating evidence suggests a gain of elusive toxicity in pathogenically mutated PFN1. The prominence of PFN1 aggregates as a pivotal pathological hallmark in PFN1 transgenic rats underscores the crucial involvement of protein aggregation in the initiation and progression of neurodegeneration. Detergent-insoluble materials were extracted from the spinal cords of paralyzed rats afflicted with ALS and were intramuscularly administered to asymptomatic recipient rats expressing mutant PFN1, resulting in an accelerated development of PFN1 inclusions and ALS-like phenotypes. This effect diminished when the extracts derived from wildtype PFN1 transgenic rats were employed, as detergent-insoluble PFN1 was detected exclusively in mutant PFN1 transgenic rats. Consequently, the factor influencing the progression of ALS pathology in recipient rats is likely associated with the presence of detergent-insoluble PFN1 within the extracted materials. Noteworthy is the absence of disease course modification upon administering detergent-insoluble extracts to rats that already displayed PFN1 inclusions, suggesting a seeding rather than augmenting role of such extracts in initiating neuropathological changes. Remarkably, pathogenic PFN1 exhibited an enhanced affinity for the molecular chaperone DNAJB6, leading to the sequestration of DNAJB6 within protein inclusions, thereby depleting its availability for cellular functions. These findings shed light on a novel mechanism that underscores the prion-like characteristics of pathogenic PFN1 in driving neurodegeneration in the context of PFN1-related ALS.
... Profilin is a protein of 12-15 kDa in size present in all eukaryotic cells and involved in the organization of cytoskeleton as well as in signal transduction. It is a monomeric actin-binding protein and a key regulator of actin-filament dynamics during processes such as cells movement, cytokinesis, and signalling [7]. In a view of the high sequence homology, cross-reactivity between Profilins is extremely common and involves virtually every plant source [4]. ...
Article
Full-text available
Introduction: In allergy diagnostics, component-resolved diagnostics (CRD) allows the clinician to assess the presence of specific IgE (sIgE) to allergenic proteins. Molecular diagnostics has improved our ability to identify not only species-specific, but also panallergen components. Aim: To characterize the Georgian allergic population according to the most frequently recognized plant panallergen components (profilins, PR-10 and nonspecific lipid transfer proteins) using sensitization data from multiplex CRD and investigate their association with particular allergic diseases. Material and methods: Patients, IgE positive to at least one studied panallergen component, were selected out of total 435 allergic individuals and stratified in two age groups: children and adults. Descriptive statistics, Chi square test (χ2) and Pearson Correlation test (r) were used for analysing the data. Results: 38% (164/435) of investigated allergic patients showed IgE reactivity to at least one molecule belonging to Profilin, PR-10 and nsLTP families. Generally, PR-10 reactive individuals represented the largest group of patients (56.0%), followed by Profilins (43.0%) and nsLTP (32.0%). For the PR-10 allergen group, IgE sensitization was dominated by Bet v 1, for Profilin - by Hev b 8 and for nsLTP - by Pru p 3. It was shown that sensitization with nsLTPs revealed statistically important associations with allergic rhinitis (p = 0.005) and dermatitis (p = 0.02). PR-10 allergen sensitization was associated with allergic rhinitis (p = 0.04) and asthma (p = 0.04). Conclusions: According to our results, sensitization to plant panallergens in the Georgian population creates characteristic features overlapping serotypes of Central Europe and Mediterranean region.
... Profilin-1 is believed to function as a negative regulator of MM aggressiveness and is classified as a tumor-suppressor protein [143]. It is also involved in a diverse range of cellular functions, including proliferation, migration, endocytosis, mRNA splicing, and gene transcription [144]. Upregulation of PSME2, PSMA5, and PSMB10 was observed in MM cell lines. ...
... Profilin-1 is believed to function as a negative regulator of MM aggressiveness and is classified as a tumor-suppressor protein [143]. It is also involved in a diverse range of cellular functions, including proliferation, migration, endocytosis, mRNA splicing, and gene transcription [144]. Upregulation of PSME2, PSMA5, and PSMB10 was observed in MM cell lines. ...
Article
Full-text available
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
... While the function of FCER1G in HCC is not yet fully understood, a study by Dong et al. (2022) suggested that FCER1G was associated with macrophage infiltration and played a role in promoting unfavorable prognosis by affecting tumor immunity in clear cell renal cell carcinoma. PFN1 was mainly responsible for the polymerization of actin filaments and responds to extracellular signals, which were associated with cell proliferation and motility (Witke, 2004). Xie et al. (2018) suggested that PFN1 was a risk factor for poor prognosis in HCC. ...
Article
Full-text available
Background: Natural killer (NK) cells are a type of innate immune cell that recognize and eliminate tumor cells and infected cells, without prior sensitization or activation. Herein, we aimed to construct a predictive model based on NK cell-related genes for hepatocellular carcinoma (HCC) patients and assess the feasibility of utilizing this model for prognosis prediction. Methods: Single-cell RNA-seq data were obtained from the Gene Expression Omnibus (GEO) database to identify marker genes of NK cells. Univariate Cox and lasso regression were performed to further establish a signature in the TCGA dataset. Subsequently, qPCR and immunohistochemistry (IHC) staining were employed to validate the expression levels of prognosis signature genes in HCC. The effectiveness of the model was further validated using two external cohorts from the GEO and ICGC datasets. Clinical characteristics, prognosis, tumor mutation burden, immune microenvironments, and biological function were compared for different genetic subtypes and risk groups. Finally, molecular docking was performed to evaluate the binding affinity between the hub gene and chemotherapeutic drugs. Results: A total of 161 HCC-related NK cell marker genes (NKMGs) were identified, 28 of which were significantly associated with overall survival in HCC patients. Based on differences in gene expression characteristics, HCC patients were classified into three subtypes. Ten prognosis genes (KLRB1, CD7, LDB2, FCER1G, PFN1, FYN, ACTG1, PABPC1, CALM1, and RPS8) were screened to develop a prognosis model. The model not only demonstrated excellent predictive performance on the training dataset, but also were successfully validated on two independent external datasets. The risk scores derived from the model were shown to be an independent prognosis factor for HCC and were correlated with pathological severity. Moreover, qPCR and IHC staining confirmed that the expression of the prognosis genes was generally consistent with the results of the bioinformatic analysis. Finally, molecular docking revealed favorable binding energies between the hub gene ACTG1 and chemotherapeutic drugs. Conclusion: In this study, we developed a model for predicting the prognosis of HCC based on NK cells. The utilization of NKMGs as innovative biomarkers showed promise in the prognosis assessment of HCC.
... However, one key protein present across eukaryotes from Apicomplexa to Opisthokonts is profilin, a sequester of Gactin [30]. The role of profilin is to maintain a pool of polymerizable actin monomers and to catalyse the exchange of ADP to ATP in the monomers [31,32]. Profilin then delivers these Gactin-ATP to formin, a nucleator and processive capper that binds to the barbed end of the actin filament [33][34][35]. ...
Article
Full-text available
With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.
... The only source of sensitisation for Bet v 1 homologs is birch tree pollen (birch and alder, among others) [9][10][11]. Alternatively, profilin sensitises a wide variety of pollens, from birch trees to grasses (e.g., orchard grass and timothy), and weeds of the Asteraceae family (e.g., ragweed and mugwort) [12,13]. ...
Article
Full-text available
Pollen food allergy syndrome (PFAS) is caused by cross-reactivity with pollen; however, not all-pollen-sensitised individuals develop PFAS, and studies on the characteristics of PFAS development are limited in Japan. We investigated the prevalence and risk factors for the development of PFAS in Japanese children and adolescents sensitised to pollen and their association with pollen-specific IgE levels. The characteristics of PFAS were investigated in patients with allergies aged 3–18 years who visited Dokkyo Medical University Hospital between January 2016 and December 2019. Specific IgE levels for alder, Japanese cedar, ragweed, and orchard grass were measured in patients sensitised to any of the pollens. Patients were categorised into preschool (G1), elementary school (G2), and middle-high school (G3) groups. Overall, 600 patients were enrolled. The prevalence of PFAS was 8.5% in G1, 20% in G2, and 36.3% in G3. Multivariate logistic regression analysis demonstrated strong associations between the risk of developing PFAS and older age (odds ratio (OR), 1.12; 95% confidence interval (CI), 1.06–1.19; P < 0.001 ), seasonal allergy rhinitis (OR, 6.93; 95% CI, 1.59–30.34; P = 0.010 ), and alder sensitisation (OR, 6.20; 95% CI, 2.66–14.49; P < 0.001 ). Spearman’s correlation revealed statistically significant positive correlation between each pollen-specific IgE level; high pollen-specific IgE levels were also a risk factor. The OR for being sensitised to all four species was 36.83 (95% CI, 8.93–151.83, P < 0.001 ) when compared with Japanese cedar alone. Alder was most relevant, with an alder-specific IgE level cutoff value of 2.54 UA/mL. The sensitivity was 78.9%, and the specificity was 70.9%. In conclusion, preschool children develop PFAS with alder sensitisation, and higher pollen-specific IgE levels and increased number of pollen sensitisations are risk factors for developing PFAS.
... IIF detection of Profilin 2 and its quantification by ImageJ analysis shows significantly increased expression of Profilin 2 in the HDAC6-transfected cells (b, c). *P ≤ 0.05; MFI, mean fluorescence intensity system, and Profilins 3 and 4 have been reported to be testis-specific, where they are expressed specifically in spermatids (Witke et al. 1998(Witke et al. , 2001Witke 2004;Birbach 2008). Profilins 1, 3 and 4 were also detected by us in the GC-1 cells as noted from our microarray data. ...
Article
Full-text available
Previous reports from this laboratory have demonstrated the involvement of histone deacetylase 6 (HDAC6) in sperm motility. As the presence of HDAC6 has also been reported in the earlier stage germ cells, studies were undertaken to explore its role during these stages of spermatogenesis. HDAC6 was overexpressed in GC-1spg cells, which represent the stage between type B spermatogonia and primary spermatocyte, and its effect on germ cell transcriptome was investigated by microarray. Among the many transcripts that were differentially regulated, Profilin 2, reported previously as a neuronal specific isoform, was observed as one of the genes highly upregulated at the transcript level, which was further confirmed by real-time PCR, and the protein confirmed by indirect immunofluorescence (IIF). Profilin 2 colocalized with HDAC6, as seen both in GC-1 cells and sperm. On the sperm, the presence of Profilin 2 was detected throughout the flagella with its colocalization with HDAC6 seen conspicuously in the mid-piece region of the flagella. Co-immunoprecipitation studies confirmed Profilin 2 interaction with HDAC6. Docking studies using Z dock suggested the interaction of 8 residues of HDAC6 with 6 residues of Profilin 2. The novel observation of Profilin 2 in spermatogonial cells, its significant upregulation on HDAC6 overexpression and its interaction with HDAC6 suggests that HDAC6 in collaboration with Profilin 2 may play a role in regulating the movement of germ cells from one stage/compartment to the next.
... Primarily, profilins bind to monomeric G-actin and catalyze adenosine diphosphate (ADP) to adenosine triphosphate (ATP) exchange, leading to the binding of G-actin to the barbed end of F-actin promoting the directed polymerization of the actin filament (Hensel and Claus, 2018;Witke, 2004). Thereby, the activity of profilins is regulated via phosphorylation at distinct sites (Fan et al., 2012;Hensel and Claus, 2018). ...
Thesis
Full-text available
Spinal muscular atrophy (SMA) is a genetic pediatric condition that affects lower motoneurons leading to their degeneration and muscle weakness. It is caused by homozygous loss or mutations in the Survival Motor Neuron 1 (SMN1) gene; however, the pathomechanism leading to motoneuron degeneration is not fully resolved. Cultured embryonic SMA motoneurons display axon elongation and differentiation defects accompanied by collapsed growth cones with a disturbed actin cytoskeleton. Intriguingly, motoneurons cultured from mice deficient for the Tropomyosin-kinase receptor B (TrkB), exhibit similar pathological features. Thus, the question arises whether SMA motoneurons suffer from defective Brain-derived neurotrophic factor (BDNF)/TrkB signaling and whether there is a link to the disturbed actin cytoskeleton. In the recent years, modifier genes such as Plastin 3 (PLS3) were shown to beneficially interfere with SMA pathology. Nevertheless, the mechanism of how the actin-bundler PLS3 counteracts SMN deficiency is not well understood. In this study, we investigated TrkB localization and its activation in cultured SMA motoneurons and neuromuscular junctions (NMJs). While TrkB levels are only mildly affected locally in axon terminals, BDNF-mediated TrkB phosphorylation was massively disturbed. The activity-dependent TrkB translocation to the cell surface and its activation via BDNF were shown to be Pls3-dependent processes, that can be abolished by knockdown of Pls3. In contrast, PLS3 overexpression in SMA motoneurons rescued the defects on morphological and functional level. In particular, the relocation of TrkB to the cell surface after BDNF-induced internalization is disturbed in SMA, which is based on an actin-dependent TrkB translocation defect from intracellular stores. Lastly, AAV9-mediated PLS3 overexpression in vivo in neonatal SMA mice provided further evidence for the capacity of PLS3 to modulate actin dynamics necessary for accurate BDNF/TrkB signaling. In conclusion, we provide a novel role for PLS3 in mediating proper alignment of transmembrane proteins as prerequisite for their appropriate functioning. Hence, PLS3 is required for a key process indispensable for the development and function of motoneurons even beyond the context of SMA.
... In addition to the members of the Arp2/3 complex Arpc4 and Arpc1b, RNA-seq analysis revealed the downregulation of Pfn1 transcripts in the axonal compartment of Smn knockdown motoneurons (Fig. 3 F). Profilin inherits complex functions and is involved in the regulation of directed actin polymerization (Hensel and Claus, 2018;Witke, 2004). Moreover, is has been shown that altered profilin 6, n = 10; U-Mann-Whitney, ****P ≤ 0.0001). ...
Article
Full-text available
Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration. Despite the observed beneficial modifying effect of PLS3, the mechanism of how it supports F-actin-mediated cellular processes in motoneurons is not yet well understood. Our data reveal disturbed F-actin-dependent translocation of the Tropomyosin receptor kinase B (TrkB) to the cell surface of Smn-deficient motor axon terminals, resulting in reduced TrkB activation by its ligand brain-derived neurotrophic factor (BDNF). Improved actin dynamics by overexpression of hPLS3 restores membrane recruitment and activation of TrkB and enhances spontaneous calcium transients by increasing Cav2.1/2 “cluster-like” formations in SMA axon terminals. Thus, our study provides a novel role for PLS3 in supporting correct alignment of transmembrane proteins, a key mechanism for (moto)-neuronal development.
... We recently identified a loss-of-function mutation in the PFN1 gene (c.318_321del) in a hereditary form of OS arising in Paget's disease of bone, and somatic PFN1 loss of heterozygosity (LOH) was also detected in sporadic OS/PDB patients 26 , thus suggesting a potential role for Profilin 1 in OS pathogenesis. PFN1 encodes Profilin 1, the most studied member of a conserved family of four small actin-binding proteins involved in the organisation of the cellular membrane and cytoskeleton 27,28 . Profilin 1 mediates the dynamic remodelling of the actin cytoskeleton by recharging actin monomers with ATP for new filament assembly 29 . ...
Article
Full-text available
Profilin 1—encoded by PFN1—is a small actin-binding protein with a tumour suppressive role in various adenocarcinomas and pagetic osteosarcomas. However, its contribution to tumour development is not fully understood. Using fix and live cell imaging, we report that Profilin 1 inactivation results in multiple mitotic defects, manifested prominently by anaphase bridges, multipolar spindles, misaligned and lagging chromosomes, and cytokinesis failures. Accordingly, next-generation sequencing technologies highlighted that Profilin 1 knock-out cells display extensive copy-number alterations, which are associated with complex genome rearrangements and chromothripsis events in primary pagetic osteosarcomas with Profilin 1 inactivation. Mechanistically, we show that Profilin 1 is recruited to the spindle midzone at anaphase, and its deficiency reduces the supply of actin filaments to the cleavage furrow during cytokinesis. The mitotic defects are also observed in mouse embryonic fibroblasts and mesenchymal cells deriving from a newly generated knock-in mouse model harbouring a Pfn1 loss-of-function mutation. Furthermore, nuclear atypia is also detected in histological sections of mutant femurs. Thus, our results indicate that Profilin 1 has a role in regulating cell division, and its inactivation triggers mitotic defects, one of the major mechanisms through which tumour cells acquire chromosomal instability.
... Members of the profilin family facilitate the nucleotide exchange on monomeric actin, inhibit the polymerization at the barbed end and contribute to the maintenance of the polymerization competent intracellular ATP-G-actin pool [41][42][43][44][45][46][47][48][49][50][51]. Previous observations extend the functional variety of profilin as it can bind to lipids and to polyproline region [52,53]. ...
Article
Full-text available
The monomeric (G-actin) and polymer (F-actin) forms of actin play important role in muscle development and contraction, cellular motility, division, and transport processes. Leiomodins 1–3 (Lmod1–3) are crucial for the development of muscle sarcomeres. Unlike tropomodulins that localize only at the pointed ends, the striated muscle specific Lmod2 shows diffuse distribution along the entire length of the thin filaments. The G-actin-binding profilin (Pro) facilitates the nucleotide exchange on monomeric actin and inhibits the polymerization at the barbed end, therefore contributes to the maintenance of the intracellular pool of polymerization competent ATP-G-actin. Cyclophosphamide (CP) is a cytostatic drug that can have potential side effects on muscle thin filaments at the level of actin in myofilaments. Here, we aimed at investigating the influence of CP on actin and its complexes with actin-binding proteins by using differential scanning calorimetry (DSC). We found that upon CP treatment, the denaturation of the Pro-G-actin and Lmod2-F-actin complexes was characterized by an increased enthalpy change. However, after the CP treatment, the melting temperature of F-actin was the same as in the presence of Lmod2, seems like Lmod2 does not have any effect on the structure of the CP alkylated F-actin. In case of Pro bound G-actin the melting temperature did not respond to the CP addition. The intracellular function of Lmod2 in muscle cells can be modified within CP drug treatment.
... PFN is essential for cell motility in vivo through the regulation of actin polymerization kinetics [166]. Cell migration and intercellular adhesion can be inhibited by reducing the expression of PFN in cancer cells [93]. ...
Article
Full-text available
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
... Triosephosphate isomerase (TPI) has been reported as the most abundant secreted protein and plays a vital role in the transmission cycle of B. malayi filarial Schistosoma japonicum and proposed as a potential vaccine candidate [64]. An increase in cytoplasmic Ca 2+ level can cause its influx in mitochondria, which disrupts the mitochondrial G-actin and promotes filament elongation, while its downregulation inhibits actin polymerization, thereby regulating cell motility [62,63]. It is reported in helminth parasites like ...
Article
Full-text available
Prolyl oligopeptidase (POP) plays a crucial role in the processing and degradation of neuropeptides and regulates inositol trisphosphate (IP3) signaling in mammals. We have reported that POP inhibition leads to IP3-mediated calcium efflux leading to mitochondrial-mediated apoptosis in the filarial parasite Setaria cervi. This study further elucidates the effect of altered calcium homeostasis on the proteome of filarial parasites. Adult parasites were treated with POP’s specific inhibitor, Z-Pro-prolinal (ZPP), for 7 h. Cytosolic and mitochondrial proteome was analyzed using 2D gel electrophoresis coupled with MALDI-MS/MS. Phosphoproteins were also analyzed in the cytosolic fraction of the parasites. The phosphoprotein analysis revealed 7, and 9 spots in the cytosolic fraction of control and ZPP-treated parasites, respectively. The two identified protein spots in the treated set were found to be involved in G protein signaling. In cytosolic fraction, 109 and 112 protein spots were observed in control and treated parasites, respectively. Of these, 56 upregulated and 32 downregulated protein spots were observed in the treated set. On the other hand, 50 and 47 protein spots were detected in the mitochondrial fraction of control and treated parasites, respectively. Of these spots, 18 upregulated and 12 down-regulated protein spots were found in treated parasites. In silico analysis showed that the identified proteins were involved in energy metabolism, calcium signaling, stress response, and cytoskeleton organization. These findings correlate with our previous results suggesting the important regulatory role of POP in signaling and different metabolic pathways of filarial parasites.
... An increasing amount of research is showing that PFN1 can act as a key signaling molecule in the network hub, and participate in a series of important physiological processes, such as protein transmembrane transport, nuclear transcription, and activation of the small GTPase signaling pathway, by binding to target proteins through its domain [25]. Thus, we investigated the mechanism of PFN1 on regulating myogenic differentiation via analyzing proteins regulated by PFN1. ...
Article
Full-text available
Myoblast differentiation is essential for the formation of skeletal muscle myofibers. Profilin1 (Pfn1) has been identified as an actin-associated protein, and has been shown to be critically important to cellular function. Our previous study found that PFN1 may inhibit the differentiation of bovine skeletal muscle satellite cells, but the underlying mechanism is not known. Here, we confirmed that PFN1 negatively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Immunoprecipitation assay combined with mass spectrometry showed that Cdc42 was a binding protein of PFN1. Cdc42 could be activated by PFN1 and could inhibit the myogenic differentiation like PFN1. Mechanistically, activated Cdc42 increased the phosphorylation level of p2l-activated kinase (PAK), which further activated the phosphorylation activity of c-Jun N-terminal kinase (JNK), whereas PAK and JNK are inhibitors of myogenic differentiation. Taken together, our results reveal that PFN1 is a repressor of bovine myogenic differentiation, and provide the regulatory mechanism.
... Moreover, dysregulation of the postsynaptic actin cytoskeleton has been implicated in neuropsychiatric diseases such as autism spectrum disorders (ASD), schizophrenia, and intellectual disability, as well as in Alzheimer's disease (Duffney et al., 2015;Spence and Soderling, 2015;Pelucchi et al., 2020b). Profilins are structurally conserved proteins that are best known as accelerators of nucleotide exchange on globular actin monomers (G-actin) required for F-actin assembly (Witke, 2004;Rust et al., 2012;Murk et al., 2021). Two of the four profilins, namely profilin1 and profilin2, are expressed in the mouse brain (Witke et al., 1998), and both have been located in postsynaptic structures of isolated neurons and implicated in dendritic spine morphology (Ackermann and Matus, 2003;Neuhoff et al., 2005). ...
Article
Full-text available
Actin filaments form the backbone of dendritic spines, the postsynaptic compartment of most excitatory synapses in the brain. Spine density changes affect brain function, and postsynaptic actin defects have been implicated in various neuropathies. It is mandatory to identify the actin regulators that control spine density. Based on previous studies, we hypothesized a role for the actin regulator profilin1 in spine formation. We report reduced hippocampal spine density in juvenile profilin1 mutant mice together with impairments in memory formation and reduced ultrasonic communication during active social behavior. Our results, therefore, underline a previously suggested function of profilin1 in controlling spine formation and behavior in juvenile mice.
... As profilin-1 interacts with more than 50 ligands, it is involved in multiple cellular pathways that may play a role in ALS pathogenesis [27]. It binds to ATXN2 [28] for which intermediate length polyglutamine expansions have been associated with ALS risk [29] and which is involved in RNA metabolism, regulating P bodies and stress granule formation. ...
Article
Full-text available
Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.
... Profilin, a 15 kDa globular protein, regulates actin polymerization and interacts with proline-rich ligands through its poly-L-proline binding domain to regulate organ development, wound healing and immune functions [1][2][3]. Most of the cancers express a lower amount of profilin, which results in the reduction of focal adhesion and increased malignancy [4][5]. Although reduced expression of profilin increases cancer aggressiveness, complete ablation of this protein results in compromised growth and viability [6,7]. ...
Article
Profilin regulates actin polymerization, and its balanced expression is required for cellular growth and development. Most tumors have compromised profilin expression, and its overexpression in MDA MB‐231 breast cancer cells has been reported to activate AMP‐activated protein kinase α (AMPKα), an energy‐sensing molecule that affects various cellular processes including autophagy. The present study aims to explore the role of profilin in inducing autophagy. We employed all‐trans retinoic acid (ATRA) as an inducer of profilin expression and showed that profilin induces autophagy through mTOR inhibition, autophagy‐activating kinase ULK1 upregulation, and AMPK stabilization as well as its activation. Furthermore, evidence from our study indicates physical interaction between profilin and AMPK, which results in AMPK stabilization and induction of prolonged autophagy, thereby leading to apoptosis. This study uncovers a novel mechanism that induces autophagy in triple‐negative breast cancer cells. All‐trans retinoic acid (ATRA) induces expression of profilin, a cytoskeletal regulatory protein which interacts with AMP‐activated protein kinase α (AMPKα), an energy‐sensing molecule. This interaction leads to stabilization and activation of AMPK, which induces autophagy through mTOR inhibition and autophagy‐activating kinase ULK1 upregulation, and results in prolonged autophagy. This study uncovers a novel role for profilin involving AMPK to induce autophagy in triple‐negative breast cancer cells.
... It was reported that patients sensitized to Bet v1 showed a 3.5-fold lower risk of an IgE-mediated reaction to Mal d3 (Fernández-Rivas et al., 2006). Another allergen identified is the profilin Mal d4, a cytosolic protein, involved in intracellular transport processes and playing a key role in cell elongation and cell shape maintenance (Witke, 2004). In our study, we clearly identified the proteins XP_008337609.1 and AAX19856.1 (Table 1). ...
Article
Full-text available
The apple fruit (Malus domestica L. Borkh) is one of the most popular fruits worldwide. Beyond their beneficial properties, apples contain proteins that trigger allergic reactions in susceptible consumers. Mal d1 to d4 are allergens present in a variety of different isoforms in apples. In this study, we used proteomics to quantify all four Mal d proteins in 52 apple genotypes with varying allergenic potentials. A total of 195, 17, 14, and 18 peptides were found to be related to Mal d1, d2, d3, and d4 proteins, respectively of which 25 different Mal d proteins could be unambiguously identified. The allergenic potential of the Mal d isoforms was characterized by comparing the isoform abundance with the allergenic score of genotypes from oral challenge tests. The detected Mal d peptides presumably have different IgE binding properties and could be used as potential molecular markers to discriminate between hypoallergenic and hyperallergenic cultivars.
... It recruits monomeric actin to the barbed end of actin filaments and it contributes to elongation [55]. In mammals, profilin is constituted by four members (e.g., PFN1, PFN2, PFN3, and PFN4); PFN1 and PFN2 are the most common types of profilins [56]. ...
Article
Full-text available
Based on our original RNA sequence-based microRNA (miRNA) signatures of head and neck squamous cell carcinoma (HNSCC), it was revealed that the expression levels of miR-1-3p, miR-206, miR-133a-3p, and miR-133b were significantly suppressed in cancer specimens. Seed sequences of miR-1-3p/miR-206 and miR-133a-3p/miR-133b are identical. Interestingly, miR-1-3p/miR-133a-3p and miR-206/miR-133b are clustered in the human genome. We hypothesized that the genes coordinately controlled by these miRNAs are closely involved in the malignant transformation of HNSCC. Our in silico analysis identified a total of 28 genes that had putative miR-1-3p/miR-133a-3p and miR-206/miR-133b binding sites. Moreover, their expression levels were upregulated in HNSCC tissues. Multivariate Cox regression analyses showed that expression of PFN2 and PSEN1 were independent prognostic factors for patients with HNSCC (p < 0.05). Notably, four miRNAs (i.e., miR-1-3p, miR-206, miR-133a-3p, and miR-133b) directly bound the 3′untranslated region of PFN2 and controlled expression of the gene in HNSCC cells. Overexpression of PFN2 was confirmed in clinical specimens, and its aberrant expression facilitated cancer cell migration and invasion abilities. Our miRNA-based strategy continues to uncover novel genes closely involved in the oncogenesis of HNSCC.
Article
Full-text available
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Article
Full-text available
The progression of proteinuric kidney diseases is associated with podocyte loss but the mechanisms underlying this process remain unclear. Podocytes re-enter the cell cycle to repair double-stranded DNA (dsDNA) breaks. However, the unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity - its tissue-specific loss in mouse podocytes results in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle re-entry was identified using FUCCI2aR mice and observed altered expression of cell-cycle associated proteins such as p21, p53, Cyclin B1, and Cyclin D1. Podocyte-specific translating ribosome affinity purification (TRAP) and RNAseq revealed the downregulation of Ribosomal RNA-processing protein 8 (Rrp8). Over-expression of Rrp8 in Pfn1 KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.
Article
Full-text available
Actin-binding protein Profilin1 is an important regulator of actin cytoskeletal dynamics in cells, and critical for embryonic development in higher eukaryotes. The objective of the present study was to examine the consequence of loss-of-function of Pfn1 in vascular endothelial cells (ECs) in vivo. We utilized a mouse model engineered for tamoxifen-inducible bi-allelic inactivation of the Pfn1 gene selectively in EC (Pfn1EC-KO). Widespread deletion of EC Pfn1 in adult mice leads to severe health complications presenting overt pathologies (endothelial cell death, infarct, and fibrosis) in major organ systems and evidence for inflammatory infiltrates, ultimately compromising the survival of animals within 3 weeks of gene ablation. Mice deficient in endothelial Pfn1 exhibit selective bias towards the pro-inflammatory myeloid-derived population of immune cells, a finding further supported by systemic elevation of pro-inflammatory cytokines. We further show that triggering Pfn1 depletion not only directly upregulates pro-inflammatory cytokine/chemokine gene expression in EC but also potentiates the paracrine effect of EC on pro-inflammatory gene expression in macrophages. Consistent with these findings, we provide further evidence for increased activation of Interferon Regulatory Factor 7 (IRF7) and STAT1 in EC when depleted of Pfn1. Collectively, these findings for the first time demonstrate a prominent immunological consequence of loss of endothelial Pfn1, and an indispensable role of endothelial Pfn1 in mammalian survival unlike tolerable phenotypes of Pfn1 loss in other differentiated cell types.
Article
Full-text available
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Article
Natural products are one of the important sources for the creation of new pesticides. Drupacine ((1R,11S,12S,13R,15S)-13-methoxy-5,7,21-trioxa-19-azahexacyclo[11.7.1.02,10.04,8.011,15.015,19]henicosa-2,4(8),9-trien-12-ol), isolated from Cephalotaxus sinensis (Chinese plum-yew), is a potent herbicidal compound containing an oxo-bridged oxygen bond structure. However, its molecular target still remains unknown. In this study, the targets of drupacine in Amaranthus retroflexus were identified by combining drug affinity responsive target stability (DARTS), cellular thermal shift assay coupled with mass spectrometry (CETSA MS), RNA-seq transcriptomic, and TMT proteomic analyses. Fifty-one and sixty-eight main binding proteins were identified by DARTS and CETSA MS, respectively, including nine co-existing binding proteins. In drupacine-treated A. retroflexus seedlings we identified 1389 up-regulated genes and 442 down-regulated genes, 34 up-regulated proteins, and 194 down-regulated proteins, respectively. Combining the symptoms and the biochemical profiles, Profilin, Shikimate dehydrogenase (SkDH), and Zeta-carotene desaturase were predicted to be the drupacine potential target proteins. At the same time, drupacine was found to bind SkDH stronger by molecular docking, and its inhibition on ArSkDH increased with the treatment concentration increase. Our results suggest that the molecular target of drupacine is SkDH, a new herbicide target, which lay a foundation for the rational design of herbicides based on new targets from natural products and enrich the target resources for developing green herbicides.
Article
Monkeypox infection outbreaks have been observed sporadically in Africa, usually as a result of interaction with wildlife reservoirs. The genomes of the new strain range in size from 184.7 to 198.0 kb and are identified with 143-214 open reading frames. Viral cores are rapidly carried on microtubules away from the cell's perimeter and deeper into the cytoplasm once the virus and cell membranes fuse. Depending on the kind of exposure, patients with monkeypox may experience a febrile prodrome 5-13 days after exposure, which frequently includes lymphadenopathy, malaise, headaches, and muscle aches. A different diagnostic approach is available for monkeypox, including histopathological analysis, electron microscopy, immunoassays, polymerase chain reaction, genome sequencing, microarrays, loop-mediated isothermal amplification technology and CRISPR (i.e., "clustered regularly interspaced short palindromic repeats"). There are currently no particular, clinically effective treatments available for the monkeypox virus. An initial treatment is cidofovir. As a monophosphate nucleotide analog, cidofovir is transformed into an inhibitor of viral DNA polymerase by cellular kinases, which is analogous to cidofovir's function in inhibiting viral DNA synthesis. The European Medicine Agency and the Food and Drug Administration have both granted permission for IMVAMUNE, a replication-deficient, attenuated third-generation modified vaccinia Ankara vaccine, to be used for the prevention of smallpox and monkeypox in adults.
Article
Full-text available
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE‐mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE‐mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well‐defined, highly pure molecules for component‐resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the “EAACI Molecular Allergology User's Guide” (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state‐of‐the‐art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Article
Mutations and histidine (His) tautomerism in profilin-1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS). The conformational changes in PFN1 caused by the collective effects of G117V mutation and His tautomeric isomers εε, εδ, δε, and δδ were clarified using molecular dynamics (MD) simulations. The predominant structural variations were seen in α-helices, β-sheets, turns, and coils and the His tautomer's unique degree of disruption was seen in these conformations. The content of α-helices was 23.2 % in the εε and δδ isomers, but the observed α-helices in the isomers εδ and δε were 20.3 % and 21.7 % respectively. The percentage of β-sheet was found to be higher (34.1) in the εε isomer than in the εδ, δε, and δδ isomers, and the values were 30.4, 29.7, and 31.9, respectively. Intermolecular water dynamics analysis discloses that His 133 can form an intramolecular H-bond interaction (Nα-H---Nδ), confirming the experimental observations in the simulations of εε, δε, and δδ isomers of G117V PFN1 mutant. It was concluded that these solvent molecules are crucial for aggregation and must be considered in future research on the PFN1 associated with ALS. Overall, the study offers a thorough microscopic understanding of the pathogenic mechanisms behind conformational changes that cause aggregation illnesses like ALS.
Article
Background: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. Methods: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. Results: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. Discussion: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. Highlights: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.
Article
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons’ distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Article
Aggregation of profilin-1 (PFN1) causes a fatal neurodegenerative disease, familial amyotrophic lateral sclerosis (fALS). Histidine (His) tautomerism has been linked to the formation of fibril aggregation causing neurodegenerative disease. Characterization of intermediate species that form during aggregation is crucial, however, this has proven very challenging for experimentalists due to their transient nature. Hence, molecular dynamics (MD) simulations have been performed on the His tautomeric isomers εε, εδ, δε, and δδ of PFN1 to explain the structural changes and to correlate them with its aggregation propensity. MD simulations show that His133 presumably plays a major role in the aggregation of PFN1 upon His tautomerism compared to His119. Further, the formation of a new 310-helix is observed in εε and δε but 310-helix is not observed in δδ and εδ isomers. In addition, our findings unveil that β-sheet dominating conformations are observed in His119(δ)-His133(δ) δδ isomer of PFN1 with significant antiparallel β-sheets between residues T15-G23, S29-A33, L63-L65, Q68-S76, F83-T89, T97-T105, and K107-K115, suggesting a novel aggregation mechanism possibly occur for the formation of PFN1 aggregates. Overall, these results propose that MD simulations of PFN1 His tautomers can provide a detailed microscopic understanding of the aggregation mechanisms which are hard to probe through experiments.
Article
Effective treatments that prevent or reduce drug relapse vulnerability should be developed to relieve the high burden of drug addiction on society. This will only be possible by enhancing the understanding of the molecular mechanisms underlying the neurobiology of addiction. Recent experimental data have shown that dendritic spines, small protrusions from the dendrites that receive excitatory input, of spiny neurons in the nucleus accumbens exhibit morphological changes during drug exposure and withdrawal. Moreover, these changes relate to the characteristic drug-seeking behavior of addiction. However, due to the complexity of the dendritic spines, we do not yet fully understand the processes underlying their structural changes in response to different inputs. We propose that biophysical models can enhance the current understanding of these processes by incorporating different, and sometimes, discrepant experimental data to identify the shared underlying mechanisms and generate experimentally testable hypotheses. This review aims to give an up-to-date report on biophysical models of dendritic spines, focusing on those models that describe their shape changes, which are well-known to relate to learning and memory. Moreover, it examines how these models can enhance our understanding of the effect of the drugs and the synaptic changes during withdrawal, as well as during neurodegenerative disease progression such as Alzheimer’s disease.
Article
Profilin, known as one of the core actin-binding proteins, is an integral part of actin-based cytoskeleton involved in cell motility, cytokinesis, neuronal differentiation, and synaptic plasticity. In this study, a putative profilin gene designated as CiProfilin (GenBank accession number: JX987286) was screened out from a cDNA library of Cryptocaryon irritans trophonts. The full-length cDNA of CiProfilin gene is 582 bp, containing an open reading frame (ORF) of 471 bp, which encodes a polypeptide consisting of 156 amino acids with a predicted molecular weight of 17.3 kDa. Quantification of CiProfilin mRNA expression by real-time PCR suggested that CiProfilin was expressed in all stages of C. irritans life cycle with a significantly higher level in trophonts. Five non-universal codons (TAAs) coding glutamines (Gln) were found in the ORF and mutated to CAAs (universal codons for Gln) by site-directed mutagenesis. Then the modified ORF was inserted into the plasmid pGEX-4T-1, the recombinant plasmid was subsequently transformed into Escherichia coli. The bacteria were subsequently induced to express the recombinant CiProfilin protein fused with glutathione S transferase (G-rCiProfilin), which was then purified with glutathione sepharose 4B and thrombin cleavage. The molecular weight and the antigenicity of rCiProfilin were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis. The native CiProfilin was found abundant in the peripheral area beneath the cell membrane and around the cytostomes of theronts, suggesting its vital roles in food uptake, stomatogenesis, and parasitic invasion. Co-precipitation assay also revealed the activity of rCiProfilin in actin binding. This study will help further elucidate the specific roles of CiProfilin on the growth of C. irritans and the preliminary mechanism of its invasion to hosts.
Article
Background The Platanus acerifolia (P. acerifolia) pollen is one of the most common causes of allergic respiratory symptoms in China. However, the allergenic components in P. acerifolia are not fully studied yet. The study aimed to determine the molecular and immunochemical characterization of the profilin from P. acerifolia pollen. Methods The coding sequence of profilin was amplified, cloned, and then expressed in Escherichia coli BL21 cells and purified by nickel affinity chromatography. Protein refolding was followed by structural characterization and homology 3D model building. The allergenicity and cross-reactivity were assessed by ELISA, immunoblotting, or basophil activation test (BAT) using the sera of P. acerifolia allergic patients. Results The cDNA sequence of profilin was cloned with a 396 bp open reading frame coding for 131 amino acids. The molecular weight of the profilin was approximately 14 kDa, and the predicted structure consisted of 3 α-helixes and 7 β-sheets. Physicochemical analysis indicated the profilin was a stable, relatively thermostable, and relatively conserved protein. The allergenicity determined by ELISA, western blot, and BAT suggested 76.9% (30/39) of the P. acerifolia pollen allergic patients displayed specific IgE recognition of the profilin. The profilin shared > 80% sequence identity with Pop n 2, the profilin from Populus nigra, and observed a significant cross-reactivity with Pop n 2 in IgE-inhibition assay. Conclusion Profilin, as one of the major component allergens in P. acerifolia pollen, was identified and characterized at molecular and immunochemical levels in this study. These findings would contribute to developing diagnostic and therapeutic strategies for P. acerifolia pollen allergic patients.
Article
Targeted cancer therapy is an alternative to standard chemotherapy for a better prognosis. Although its incompetency for triple-negative breast cancer (TNBC), treatment still relies on classical chemotherapy. Increasing evidence suggest that chemotherapeutic drug-induced toxic effect could be minimised by combinatorial therapy. Profilin’s familiar anti-tumorigenic activity can be utilised in combination with the drug to improve efficacy, which could be promising therapeutics to treat TNBC. All-trans retinoic acid (ATRA) in combination with vinblastine was tested on human MDA MB-231 cell line (MB-231) (in vitro) and MB-231 borne breast cancer in nude mice (in vivo). Effects of combination treatment on tumour growth inhibition and apoptosis were examined by tumour volume, histology and PARP cleavage. ATRA-induced transcriptional regulation of profilin had been evaluated by gel-shift and reporter gene assays. Profilin’s role in ATRA-induced vinblastine efficacy was validated in profilin-stable and profilin-silenced cells. ATRA binds with RAR/RXR to increase the profilin expression that potentiated cell death by chemotherapeutics. ATRA priming led to vinblastine-mediated potentiation of G2–M phase cell cycle arrest in MB-231 cells and regression of breast cancer in xenograft mice at very low concentration without any adverse effects. Moreover, increased p53 and PTEN but downregulated p65 in the tumour tissues further supported the involvement of profilin for tumour regression. Vinblastine at very low concentration (20 times lesser than the recommended dose for breast cancer therapeutic) significantly regress tumour growth in ATRA-primed mice without any toxic effects suggesting potential combinatorial therapeutics for TNBC.
Article
Full-text available
Ena/VASP proteins are a conserved family of actin regulatory proteins made up of EVH1, EVH2 domains, and a proline-rich central region. They have been implicated in actin-based processes such as fibroblast migration, axon guidance, and T cell polarization and are important for the actin-based motility of the intracellular pathogen Listeria monocytogenes. Mechanistically, these proteins associate with barbed ends of actin filaments and antagonize filament capping by capping protein (CapZ). In addition, they reduce the density of Arp2/3-dependent actin filament branches and bind Profilin at sites of actin polymerization. Vertebrate Ena/VASP proteins are substrates for PKA/PKG serine/threonine kinases. Phosphorylation by these kinases appears to modulate Ena/VASP function within cells, although the mechanism underlying this regulation remains to be determined.
Article
Full-text available
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by the loss of alpha-motoneurons in the spinal cord followed by atrophy of skeletal muscles. SMA-determining candidate genes, SMN1 and SMN2, have been identified on human chromosome 5q. The corresponding SMN protein is expressed ubiquitously. It is coded by seven exons and contains conspicuous proline-rich motifs in its COOH-terminal third (exons 4, 5, and 6). Such motifs are known to bind to profilins (PFNs), small proteins engaged in the control of actin dynamics. We tested whether profilins interact with SMN via its polyproline stretches. Using the yeast two-hybrid system we show that profilins bind to SMN and that this binding depends on its proline-rich motifs. These results were confirmed by coimmunoprecipitation and by in vitro binding studies. Two PFN isoforms, I and II, are known, of which II is characteristic for central nervous system tissue. We show by in situ hybridization that both PFNs are highly expressed in mouse spinal cord and that PFN II is expressed predominantly in neurons. In motoneurons, the primary target of neurodegeneration in SMA, profilins are highly concentrated and colocalize with SMN in the cytoplasm of the cell body and in nuclear gems. Likewise, SMN and PFN I colocalize in gems of HeLa cells. Although SMN interacts with both profilin isoforms, binding of PFN II was stronger than of PFN I in all assays employed. Because the SMN genes are expressed ubiquitously, our findings suggest that the interaction of PFN II with SMN may be involved in neuron-specific effects of SMN mutations.
Article
Full-text available
A protein that inhibits the polymerization of actin has been purified to homogeneity in approximately 30 to 45% yield from extracts of Acanthamoeba castellanii. The amoeba protein is similar, but not identical, to a protein (profilin) isolated by a different procedure from calf spleen (Carlsson, L., Nystrom, L.E., Sundkvist, I., Markey, F., and Lindberg, U. (1977) J. Mol. Biol. 115, 465-483) and human platelets (Markey, F., Lindberg, U., and Eriksson, L. (1978) FEBS Lett. 88, 75-79; Harris, H.E., and Weeds, A.G. (1978) FEBS Lett. 90, 84-88) where it is present as a 1:1 complex with actin (profilactin). Acanthamoeba profilin is a monomeric protein of about 12,000 to 14,000 daltons, possibly smaller than the mammalian profilins. It contains one methionine, has a pI of about 6.4 under denaturing conditions, and contains about 28% α helix and 29% β structure. Acanthamoeba profilin contains proportionally more alanine and less methionine, leucine and lysine than has been reported for the mammalian profilins. Acanthamoeba profilin regulates actin polymerization by inhibiting nucleation, the first event in the polymerization process. In reconstituted systems, profilin inhibits the initial rate, but not the final extent, of actin polymerization. This inhibition can be reversed by the addition of sonicated F-actin nuclei. Profilin probably does not interact with polymeric F-actin. The molar concentration of profilin in Acanthamoeba extracts is about equal to the molar concentration of actin that remains nonpolymerized under polymerizing conditions. It is likely, therefore, that profilin is one of several proteins that regulate the organizational state of actin in the amoeba cytoplasm. This is the first time that profilin has been isolated from a nonmammalian source. Its presence in amoeba as well as mammals suggests that profilin will be as ubiquitous as actin in eukaryotic cells. The simple purification procedure described in this paper should be widely applicable.
Article
Full-text available
We present evidence for a new mechanism by which two major actin monomer binding proteins, thymosin beta 4 and profilin, may control the rate and the extent of actin polymerization in cells. Both proteins bind actin monomers transiently with a stoichiometry of 1:1. When bound to actin, thymosin beta 4 strongly inhibits the exchange of the nucleotide bound to actin by blocking its dissociation, while profilin catalytically promotes nucleotide exchange. Because both proteins exchange rapidly between actin molecules, low concentrations of profilin can overcome the inhibitory effects of high concentrations of thymosin beta 4 on the nucleotide exchange. These reactions may allow variations in profilin concentration (which may be regulated by membrane polyphosphoinositide metabolism) to control the ratio of ATP-actin to ADP-actin. Because ATP-actin subunits polymerize more readily than ADP-actin subunits, this ratio may play a key regulatory role in the assembly of cellular actin structures, particularly under circumstances of rapid filament turnover.
Article
Full-text available
Diagnosis of type I allergy essentially depends on the availability of defined allergens, which can be provided by recombinant deoxyribonucleic acid (DNA) technology. We have previously isolated the c(complementary)DNAs encoding the major birch-pollen allergen, Bet v I, and another allergen with a molecular weight of 14 kd that was identified as birch profilin and designated Bet v II. These cDNAs were isolated from a lambda gt11 expression library by screening with the serum IgE from allergic patients. To obtain expression in Escherichia coli of recombinant allergens without additional fused polypeptides, both cDNAs were inserted into the plasmid pKK223-3. E. coli cells expressing Bet v I and birch profilin (Bet v II) were used for the preparation of recombinant proteins. These proteins were tested for their IgE-binding properties on immunoblots with sera from 100 different birch pollen-allergic patients. All patients' sera, which reacted with the natural allergens, Bet v I and Bet v II, demonstrated an identical IgE-binding pattern to recombinant birch-pollen allergens. Recombinant allergens may therefore be useful for the setup of diagnostic tests that allow the discrimination of different IgE-binding patterns as well as for patient-tailored immunotherapy.
Article
Full-text available
Yeast mutants of cell cycle gene cdc48-1 arrest as large budded cells with microtubules spreading aberrantly throughout the cytoplasm from a single spindle plaque. The gene was cloned and disruption proved it to be essential. The CDC48 sequence encodes a protein of 92 kD that has an internal duplication of 200 amino acids and includes a nucleotide binding consensus sequence. Vertebrate VCP has a 70% identity over the entire length of the protein. Yeast Sec18p and mammalian N-ethylmaleimide-sensitive fusion protein, which are involved in intracellular transport, yeast Pas1p, which is essential for peroxisome assembly, and mammalian TBP-1, which influences HIV gene expression, are 40% identical in the duplicated region. Antibodies against CDC48 recognize a yeast protein of apparently 115 kD and a mammalian protein of 100 kD. Both proteins are bound loosely to components of the microsomal fraction as described for Sec18p and N-ethylmaleimide-sensitive fusion protein. This similarity suggests that CDC48p participates in a cell cycle function related to that of N-ethylmaleimide-sensitive fusion protein/Sec18p in Golgi transport.
Article
Full-text available
Chemoattractant stimulation of polymorphonuclear leukocytes is associated with a nearly two-fold rise in actin filament content. We examined the role of the actin monomer sequestering protein, profilin, in the regulation of PMN actin filament assembly during chemoattractant stimulation using a Triton extraction method. Poly-L-proline-conjugated Sepharose beads were used to assess the relative concentration of actin bound to profilin with high enough affinity to withstand dilution (profilin-actin complex) and DNase I-conjugated beads to measure the relative concentration of actin in the Triton-soluble fraction not bound to profilin. Actin associated with the Triton-insoluble fraction (F-actin) was also measured. In unstimulated PMN, the relative concentration of actin bound to profilin was maximum. After FMLP stimulation, profilin released actin monomers within 10 s, with the profilin-actin complex concentration reaching a nadir by 40 s and remaining low as long as the cells were exposed to chemoattractant (up to 30 min). If FMLP was dissociated from PMN membrane receptors using t-BOC, actin reassociated with profilin within 20 s. Quantitative analysis of these reactions, however, revealed that profilin release of and rebinding to actin could account for only a small percentage of the total change in F-actin content. Determination of the total profilin and actin concentrations in PMN revealed that the molar ratio of profilin to actin was 1 to 5.2. When purified actin was polymerized in PMN Triton extract containing EGTA, removal of profilin from the extract minimally affected (12% reduction) the high apparent critical concentration at which actin began to assemble. Although profilin released actin at the appropriate time to stimulate actin assembly during exposure to chemoattractants, the concentration of profilin in PMN was insufficient to explain the high unpolymerized actin content in unstimulated PMN and the quantity of actin released from profilin too small to account for the large shifts from unpolymerized to polymerized actin associated with maximal chemoattractant stimulation.
Article
Full-text available
The gene coding for profilin (PFY), an actin-binding protein, occurs as a single copy in the haploid genome of Saccharomyces cerevisiae and is required for spore germination and cell viability. Displacement of one gene copy in a diploid cell by a nonfunctional allele is recessively lethal: tetrad analysis yields only two viable spores per ascus. The PFY gene maps on chromosome XV and is linked to the ADE2 marker. The primary transcript of about 1,000 bases contains an intron of 209 bases and is spliced into a messenger of about 750 bases. The intron was identified by comparison with a cDNA clone, which also revealed the 3' end of the transcript. The 5' end of the mRNA was mapped by primer elongation. The gene is transcribed constitutively and has a coding capacity for a protein of 126 amino acids. The deduced molecular weight of
Article
Full-text available
Full textFull text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (78K), or click on a page image below to browse page by page. 9078
Article
Full-text available
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filament bundles of Limulus sperm, to the extract, the actin monomers rapidly assembled on these filaments. What was unexpected was that assembly took place on only one end of the bundle--the end corresponding to the preferred end for monomer addition. We showed that the absence of growth on the nonpreferred end was not due to the presence of a capper because exogenously added actin readily assembled on both ends. We also analyzed the sperm extract by SDS gel electrophoresis. Two major proteins were present in a 1:1 molar ratio: actin and a 12,500-dalton protein whose apparent isoelectric point was 8.4. The 12,500-dalton protein was purified by DEAE chromatography. We concluded that it is profilin because of its size, isoelectric point, molar ratio to actin, inability to bind to DEAE, and its effect on actin assembly. When profilin was added to actin in the presence of Limulus bundles, addition of monomers on the nonpreferred end of the bundle was inhibited, even though actin by itself assembled on both ends. Using the Limulus bundles as nuclei, we determined the critical concentration for assembly off each end of the filament and estimated the Kd for the profilin-actin complex (approximately 10 microM). We present a model to explain how profilin may regulate the extension of the Thyone acrosomal process in vivo: The profilin-actin complex can add to only the preferred end of the filament bundle. Once the actin monomer is bound to the filament, the profilin is released, and is available to bind to additional actin monomers. This mechanism accounts for the rapid rate of filament elongation in the acrosomal process in vivo.
Article
Full-text available
Profilins are small proteins that form complexes with G-actin and phosphoinositides and are therefore considered to link the microfilament system to signal transduction pathways. In addition, they bind to poly-L-proline, but the biological significance of this interaction is not yet known. The recent molecular cloning of the vasodilator-stimulated phosphoprotein (VASP), an established in vivo substrate of cAMP- and cGMP-dependent protein kinases, revealed the presence of a proline-rich domain which prompted us to investigate a possible interaction with profilins. VASP is a microfilament and focal adhesion associated protein which is also concentrated in highly dynamic regions of the cell cortex. Here, we demonstrate that VASP is a natural proline-rich profilin ligand. Human platelet VASP bound directly to purified profilins from human platelets, calf thymus and birch pollen. Moreover, VASP and a novel protein were specifically extracted from total cell lysates by profilin affinity chromatography and subsequently eluted either with poly-L-proline or a peptide corresponding to a proline-rich VASP motif. Finally, the subcellular distributions of VASP and profilin suggest that both proteins also interact within living cells. Our data support the hypothesis that profilin and VASP act in concert to convey signal transduction to actin filament formation.
Article
Full-text available
We determined the structures of Acanthamoeba profilin I and profilin II by x-ray crystallography at resolutions of 2.0 and 2.8 A, respectively. The polypeptide folds and the actin-binding surfaces of the amoeba profilins are very similar to those of bovine and human profilins. The electrostatic potential surfaces of the two Acanthamoeba isoforms differ. Two areas of high positive potential on the surface of profilin II are candidate binding sites for phosphatidylinositol phosphates. The proximity of these sites to the actin binding site provides an explanation for the competition between actin and lipids for binding profilin.
Article
Full-text available
Profilin is a ubiquitous protein that has been implicated in the signaling pathway leading to cytoskeletal rearrangement in cells. An unusual property of profilin is its high binding affinity for poly-L-proline (PLP). This binding property is conserved in the profilins from diverse species with little sequence homology. We have monitored the binding of PLP to profilin by fluorescence and nuclear magnetic resonance spectroscopies. NMR spectroscopy has identified several residues whose amide nitrogen and amide hydrogen chemical shifts are significantly perturbed by binding of PLP. The affected residues are located at various locations throughout profilin's primary structure; however, mapping the location of the affected residues onto the recently determined three-dimensional solution structure of human profilin indicates that the effects of PLP binding are highly localized. Poly-L-proline binds profilin at the hydrophobic interface between profilin's NH2- and COOH-terminal helices and the upper face of its antiparallel beta-sheet. In contrast, residues located on the opposite side of the profilin structure are unaffected. The extent of the potential interaction surface of the PLP-profilin complex suggests that as few as 6 contiguous prolines would be sufficient for binding profilin. Examination of sequence data bases indicates that stretches of prolines of this length and longer occur in numerous regulatory proteins, suggesting that the ability of profilin to bind polyproline may be an important component of its signaling capabilities.
Article
Full-text available
The three-dimensional structure of bovine profilin-beta-actin has been solved to 2.55 A resolution by X-ray crystallography. There are several significant local changes in the structure of beta-actin compared with alpha-actin as well as an overall 5 degrees rotation between its two major domains. Actin molecules in the crystal are organized into ribbons through intermolecular contacts like those found in oligomeric protein assemblies. Profilin forms two extensive contacts with the actin ribbon, one of which appears to correspond to the solution contact in vitro.
Article
Full-text available
Morphological changes in the dendritic spines have been postulated to participate in the expression of synaptic plasticity. The cytoskeleton is likely to play a key role in regulating spine structure. Here we examine the molecular mechanisms responsible for the changes in spine morphology, focusing on drebrin, an actin-binding protein that is known to change the properties of actin filaments. We found that adult-type drebrin is localized in the dendritic spines of rat forebrain neurons, where it binds to the cytoskeleton. To identify the cytoskeletal proteins that associated with drebrin, we isolated drebrin-containing cytoskeletons using immunoprecipitation with a drebrin antibody. Drebrin, actin, myosin, and gelsolin were co-precipitated. We next examined the effect of drebrin on actomyosin interaction. In vitro, drebrin reduced the sliding velocity of actin filaments on immobilized myosin and inhibited the actin-activated ATPase activity of myosin. These results suggest that drebrin may modulate the actomyosin interaction within spines and may play a role in the structure-based plasticity of synapses.
Article
Full-text available
We present a study on the binding properties of the bovine profilin isoforms to both phosphatidylinositol 4,5-bisphosphate (PIP2) and proline-rich peptides derived from vasodilator-stimulated phosphoprotein (VASP) and cyclase-associated protein (CAP). Using microfiltration, we show that compared with profilin II, profilin I has a higher affinity for PIP2. On the other hand, fluorescence spectroscopy reveals that proline-rich peptides bind better to profilin II. At micromolar concentrations, profilin II dimerizes upon binding to proline-rich peptides. Circular dichroism measurements of profilin II reveal a significant conformational change in this protein upon binding of the peptide. We show further that PIP2 effectively competes for binding of profilin I to poly-L-proline, since this isoform, but not profilin II, can be eluted from a poly-L-proline column with PIP2. Using affinity chromatography on either profilin isoform, we identified profilin II as the preferred ligand for VASP in bovine brain extracts. The complementary affinities of the profilin isoforms for PIP2 and the proline-rich peptides offer the cell an opportunity to direct actin assembly at different subcellular localizations through the same or different signal transduction pathways.
Article
Full-text available
Rho small GTPase regulates cell morphology, adhesion and cytokinesis through the actin cytoskeleton. We have identified a protein, p140mDia, as a downstream effector of Rho. It is a mammalian homolog of Drosophila diaphanous, a protein required for cytokinesis, and belongs to a family of formin-related proteins containing repetitive polyproline stretches. p140mDia binds selectively to the GTP-bound form of Rho and also binds to profilin. p140mDia, profilin and RhoA are co-localized in the spreading lamellae of cultured fibroblasts. They are also co-localized in membrane ruffles of phorbol ester-stimulated sMDCK2 cells, which extend these structures in a Rho-dependent manner. The three proteins are recruited around phagocytic cups induced by fibronectin-coated beads. Their recruitment is not induced after Rho is inactivated by microinjection of botulinum C3 exoenzyme. Overexpression of p140mDia in COS-7 cells induced homogeneous actin filament formation. These results suggest that Rho regulates actin polymerization by targeting profilin via p140mDia beneath the specific plasma membranes.
Article
Full-text available
Rac1 small GTPase plays pivotal roles in various cell functions such as cell morphology, cell polarity, and cell proliferation. We have previously identified IQGAP1 from bovine brain cytosol as a target for Rac1 by an affinity purification method. By using the same method, we purified a specifically Rac1-associated protein with a molecular mass of about 140 kDa (p140) from bovine brain cytosol. This protein interacted with guanosine 5′-(3-O-thio)triphosphate (GTPγS)·glutathioneS-transferase (GST)-Rac1 but not with the GDP·GST-Rac1, GTPγS·GST-Cdc42, or GTPγS·GST-RhoA. The amino acid sequences of this protein revealed that p140 is identified as a product of KIAA0068 gene. We denoted this protein as Sra-1 (SpecificallyRac1-associated protein). Recombinant Sra-1 interacted with GTPγS·GST-Rac1 and weakly with GDP·Rac1 but not with GST-Cdc42 or GST-RhoA. The N-terminal domain of Sra-1 (1–407 amino acids) was responsible for the interaction with Rac1. Myc-tagged Sra-1 and the deletion mutant capable of interacting with Rac1, but not the mutants unable to bind Rac1, were colocalized with dominant active Rac1Val-12 and cortical actin filament at the Rac1Val-12-induced membrane ruffling area in KB cells. Sra-1 was cosedimented with filamentous actin (F-actin), indicating that Sra-1 directly interacts with F-actin. These results suggest that Sra-1 is a novel and specific target for Rac1.
Article
Full-text available
Profilins are thought to be essential for regulation of actin assembly. However, the functions of profilins in mammalian tissues are not well understood. In mice profilin I is expressed ubiquitously while profilin II is expressed at high levels only in brain. In extracts from mouse brain, profilin I and profilin II can form complexes with regulators of endocytosis, synaptic vesicle recycling and actin assembly. Using mass spectrometry and database searching we characterized a number of ligands for profilin I and profilin II from mouse brain extracts including dynamin I, clathrin, synapsin, Rho-associated coiled-coil kinase, the Rac-associated protein NAP1 and a member of the NSF/sec18 family. In vivo, profilins co-localize with dynamin I and synapsin in axonal and dendritic processes. Our findings strongly suggest that in brain profilin I and profilin II complexes link the actin cytoskeleton and endocytic membrane flow, directing actin and clathrin assembly to distinct membrane domains.
Article
Full-text available
The embryonal carcinoma cell line P19 responds to treatment with retinoid acid by differentiation into neuronal cell types [2]. Using radioactively labeled cDNA derived from differentiating P19 cells we screened an adult mouse brain cDNA library and isolated a gene named shyc for selective hybridizing clone. The encoded protein did not reveal homology to any known protein. We used in situ hybridization on mouse embryonic and adult brain sections to study shyc expression. The developing and embryonic nervous system showed the most prominent hybridization signals. In the adult brain the olfactory pathway was marked by shyc expression.
Article
Full-text available
Profilin was first identified as an actin monomer binding protein; however, recent reports indicate its involvement in actin polymerization. To date, there is no direct evidence of a functional role in vivo for profilin in actin cytoskeletal reorganization. Here, we prepared a profilin mutant (H119E) defective in actin binding, but retaining the ability to bind to other proteins. This mutant profilin I suppresses actin polymerization in microspike formation induced by N-WASP, the essential factor in microspike formation. Profilin associates both in vivo and in vitro with N-WASP at proline-rich sites different from those to which Ash/Grb2 binds. This association between profilin and N-WASP is required for N-WASP-induced efficient microspike elongation. Moreover, we succeeded in reconstituting microspike formation in permeabilized cells using profilin I combined with N-WASP and its regulator, Cdc42. These findings provide the first evidence that profilin is a key molecule linking a signaling network to rapid actin polymerization in microspike formation.
Article
Full-text available
Rac is a Rho-family small GTPase that induces the formation of membrane ruffles. However, it is poorly understood how Rac-induced reorganization of the actin cytoskeleton, which is essential for ruffle formation, is regulated. Here we identify a novel Wiskott-Aldrich syndrome protein (WASP)-family protein, WASP family Verprolin-homologous protein (WAVE), as a regulator of actin reorganization downstream of Rac. Ectopically expressed WAVE induces the formation of actin filament clusters that overlap with the expressed WAVE itself. In this actin clustering, profilin, a monomeric actin-binding protein that has been suggested to be involved in actin polymerization, was shown to be essential. The expression of a dominant-active Rac mutant induces the translocation of endogenous WAVE from the cytosol to membrane ruffling areas. Furthermore, the co-expression of a deltaVPH WAVE mutant that cannot induce actin reorganization specifically suppresses the ruffle formation induced by Rac, but has no effect on Cdc42-induced actin-microspike formation, a phenomenon that is also known to be dependent on rapid actin reorganization. The deltaVPH WAVE also suppresses membrane-ruffling formation induced by platelet-derived growth factor in Swiss 3T3 cells. Taken together, we conclude that WAVE plays a critical role downstream of Rac in regulating the actin cytoskeleton required for membrane ruffling.
Article
Full-text available
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA-N-WASP-Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH(2)-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions.
Article
Full-text available
Neurotransmitter exocytosis is restricted to the active zone, a specialized area of the presynaptic plasma membrane. We report the identification and initial characterization of aczonin, a neuron-specific 550-kD protein concentrated at the presynaptic active zone and associated with a detergent-resistant cytoskeletal subcellular fraction. Analysis of the amino acid sequences of chicken and mouse aczonin indicates an organization into multiple domains, including two pairs of Cys(4) zinc fingers, a polyproline tract, and a PDZ domain and two C2 domains near the COOH terminus. The second C2 domain is subject to differential splicing. Aczonin binds profilin, an actin-binding protein implicated in actin cytoskeletal dynamics. Large parts of aczonin, including the zinc finger, PDZ, and C2 domains, are homologous to Rim or to Bassoon, two other proteins concentrated in presynaptic active zones. We propose that aczonin is a scaffolding protein involved in the organization of the molecular architecture of synaptic active zones and in the orchestration of neurotransmitter vesicle trafficking.
Article
Full-text available
The tubulin-binding protein gephyrin, which anchors the inhibitory glycine receptor (GlyR) at postsynaptic sites, decorates GABAergic postsynaptic membranes in various brain regions, and postsynaptic gephyrin clusters are absent from cortical cultures of mice deficient for the GABA(A) receptor gamma2 subunit. Here, we investigated the postsynaptic clustering of GABA(A) receptors in gephyrin knock-out (geph -/-) mice. Both in brain sections and cultured hippocampal neurons derived from geph -/- mice, synaptic GABA(A) receptor clusters containing either the gamma2 or the alpha2 subunit were absent, whereas glutamate receptor subunits were normally localized at postsynaptic sites. Western blot analysis and electrophysiological recording revealed that normal levels of functional GABA(A) receptors are expressed in geph -/- neurons, however the pool size of intracellular GABA(A) receptors appeared increased in the mutant cells. Thus, gephyrin is required for the synaptic localization of GlyRs and GABA(A) receptors containing the gamma2 and/or alpha2 subunits but not for the targeting of these receptors to the neuronal plasma membrane. In addition, gephyrin may be important for efficient membrane insertion and/or metabolic stabilization of inhibitory receptors at developing postsynaptic sites.
Article
Yeast mutants of cell cycle gene cdc481 ar- rest as large budded cells with microtubules spreading aberrantly throughout the cytoplasm from a single spin- dle plaque . The gene was cloned and disruption proved it to be essential . The CDC48 sequence encodes a pro- tein of 92 kD that has an internal duplication of 200 amino acids and includes a nucleotide binding consensus sequence . Vertebrate VCP has a 70% identity over the entire length of the protein . Yeast Secl8p and mamma- lian N-ethylmaleimide-sensitive fusion protein, which are involved in intracellular transport, yeast Paslp,
Article
Background: Profilin is a widely and highly expressed 14 kDa protein that binds actin monomers, poly(L-proline) and polyphosphoinositol lipids. It participates in regulating actin-filament dynamics that are essential for many types of cell motility. We sought to investigate the site of interaction of profilin with phosphoinositides. Results: Human profilin I was covalently modified using three tritium-labeled 4-benzoyldihydrocinnamoyl (BZDC)-containing photoaffinity analogs of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). The P-1-tethered D-myoinositol 1,4,5-trisphosphate (Ins(1,4,5)P3) modified profilin I efficiently and specifically; the covalent labeling could be displaced by co-incubation with an excess of PtdIns(4,5)P2 but not with Ins(1,4,5)P3. The acyl-modified PtdIns(4,5)P2 analog showed little protein labeling even at very low concentrations, whereas the head-group-modified PtdIns(4,5)P2 phosphotriester-labeled monomeric and oligomeric profilin. Mass spectroscopic analyses of CNBr digests of [3H]BZDC-Ins(1,4,5)P3-modified recombinant profilin suggested that modification was in the amino-terminal helical CNBr fragment. Edman degradation confirmed Ala1 of profilin I (residue 4 of the recombinant protein) was modified. Molecular models show a minimum energy conformation in which the hydrophobic region of the ligand contacts the amino-terminal helix whereas the 4,5-bisphosphate interacts with Arg135 and Arg136 of the carboxy-terminal helix. Conclusions: The PtdIns(4,5)P2-binding site of profilin I includes a bisphosphate interaction with a base-rich motif in the carboxy-terminal helix and contact between the lipid moiety of PtdIns(4,5)P2 and a hydrophobic region of the aminoterminal helix of profilin. This is the first direct evidence for a site of interaction of the lipid moiety of a phosphoinositide bisphosphate analog with profilin.
Article
We have previously isolated and crystallized a complex from calf spleen, containing actin and a smaller protein which we call profilin. In this paper we describe some properties of this complex, and show that association with profilin is sufficient to explain the persistent monomeric state of some of the actin in spleen extracts; moreover, spleen profilin will recombine with skeletal muscle actin to form a non-polymerizable complex resembling that isolated from spleen. Profilin is not restricted to spleen, but is found in a variety of other tissues and tissue-cultured cell lines. We propose that reversible association of actin with profilin in the cell may provide a mechanism for storage of monomeric actin and controlled turnover of microfilaments.
Article
The entire cytoplasmic contents of 15 highly polyploid nurse cells are transported rapidly to the oocyte near the end of Drosophila oogenesis. chickadee is one of a small group of genes whose mutant phenotype includes a disruption of this nurse cell cytoplasm transport. We have cloned the chickadee gene and found that cDNA clones encode a protein 40% identical to yeast and Acanthamoeba profilin. The nurse cells from chickadee egg chambers that lack ovary-specific profilin fail to synthesize cytoplasmic actin networks correctly. In addition, the nurse cell nuclei in chickadee egg chambers become displaced and often partially stretched through the channels leading into the oocyte, blocking the flow of cytoplasm. We suggest that the newly synthesized cytoplasmic actin networks are responsible for maintaining nuclear position in the nurse cells.
Article
Two profilin isoforms (profilins I and II) have been purified from Dictyostelium discoideum, using affinity chromatography on a poly(L-proline) matrix; the isoforms could be separated by cation-exchange chromatography on a FPLC system. The gene coding for profilin I was cloned from a lambda gt11 cDNA library using a profilin I-specific monoclonal antibody. The profilin II cDNA was isolated by probing the cDNA library with an oligonucleotide deduced from the N-terminal amino acid sequence of profilin II, which has an open N terminus in contrast to profilin I. The deduced amino acid sequences of both genes show that profilin I in comparison to profilin II is slightly larger (13,064 Da vs 12,729 Da), has a more acidic isoelectric point (calc. pI 6.62 vs 7.26) and shares with profilin II 68 identical residues out of 126 amino acids. Although both profilins contain a conserved lysine residue in the putative actin-binding region and can be crosslinked covalently to G-actin, the crosslinking efficiency of profilin II to actin is substantially higher than that of profilin I. These data are in agreement with studies on the functional properties of the profilin isoforms. In most preparations profilin II was more efficient in delaying the onset of elongation during the course of actin polymerization and caused a higher critical concentration for actin polymerization than profilin I, probably due to the slightly increased affinity of profilin II for D. discoideum G-actin (approx. Kd 1.8 x 10(-6) M) as compared to that of profilin I (approx. Kd 5.1 x 10(-6) M).(ABSTRACT TRUNCATED AT 250 WORDS)
Article
There is evidence that the polymerization of actin takes place at the plasma membrane, and that profilactin (profilin/actin complex), the unpolymerized form of actin found in extracts of many non-muscle cells, serves as the immediate precursor. Both isolated profilin and profilactin interact with detergent when analysed by charge shift electrophoresis, indicating that they have amphipathic properties and may be able to interact directly with the plasma membrane. We demonstrate here that isolated profilin, as well as the profilactin complex, interacts with anionic phospholipids. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) was found to be the most active phospholipid, causing a rapid and efficient dissociation of profilactin with a concomitant polymerization of the actin in appropriate conditions. These and other observations suggest the possibility of a relationship between the induction of actin filament formation and the increased activity in the phosphatidylinositol cycle seen as a result of ligand-receptor interactions in various systems.
Article
A sevenfold molar excess of Acanthamoeba profilin, a 12 000-dalton protein that inhibits actin polymerization, increases the rate of exchange of ATP bound to G-actin with ATP in solution about 17-fold, i.e., from 7.7 x 10(-4) to 1.3 x 10(-2) S-1, at 25 degrees C, 0.033 mM Ca2+, and 0.1 mM ATP, pH 7.5. Detailed analysis of the equilibrium isotope-exchange data shows that profilin and actin form a 1:1 complex with KD = 4.7 x 10(-5) M and that the binding of profilin to actin is rapid and reversible. The actin-profilin complex binds 1 mol of ATP/mol, as does G-actin. Profilin does not interact with ATP or Ca2+.
Article
Rho and rac, two members of the ras-related superfamily of small GTPases, regulate the polymerization of actin to produce stress fibers and lamellipodia, respectively. We report here that cdc42, another member of the rho family, triggers the formation of a third type of actin-based structure found at the cell periphery, filopodia. In addition to stress fibers, rho controls the assembly of focal adhesion complexes. We now show that rac and cdc42 also stimulate the assembly of multimolecular focal complexes at the plasma membrane. These complexes, which are associated with lamellipodia and filopodia, contain vinculin, paxillin, and focal adhesion kinase, but are distinct from and formed independently of rho-induced focal adhesions. Activation of cdc42 in Swiss 3T3 cells leads to the sequential activation of rac and then rho, suggesting a molecular model for the coordinated control of cell motility by members of the rho family of GTPases.
Article
The biochemical characteristics of a new human profilin isoform are described. We refer to this recently described isoform as profilin II (isoelectric point 5.9) in comparison to profilin I (pI 8.4). We expressed both isoforms in bacteria and compared their actin-binding properties, binding to poly(L-proline), affinities for phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], and their effects on nucleotide exchange on actin. Profilin I and profilin II have similar affinities for PtdIns(4,5)P2 and poly(L-proline), and both accelerate nucleotide exchange on monomeric actin to the same extent. However, the affinity of profilin I for monomeric actin is about five times higher than the affinity of profilin II for actin. Potential structural differences of profilin I and profilin II that might explain the difference in actin binding are discussed.
Article
Intracellular motility of the bacterial pathogen Listeria monocytogenes depends on actin polymerization that is coordinated by the bacterial surface protein ActA and host actin-binding protein profilin.
Article
The interaction of bovine spleen profilin with ATP- and ADP-G-actin and poly(L-proline) has been studied by spectrofluorimetry, analytical ultracentrifugation, and rapid kinetics in low ionic strength buffer. Profilin binding to G-actin is accompanied by a large quenching of tryptophan fluorescence, allowing the measurement of an equilibrium dissociation constant of 0.1-0.2 microM for the 1:1 profilin-actin complex, in which metal ion and nucleotide are bound. Fluorescence quenching monitored the bimolecular reaction between G-actin and profilin, from which association and dissociation rate constants of 45 microM-1 s-1 and 10 s-1 at 20 degrees C could be derived. The tryptophan(s) which are quenched in the profilin-actin complex are no longer accessible to solvent, which points to W356 in actin as a likely candidate, consistent with the 3D structure of the crystalline profilin-actin complex [Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C. W., & Lindberg, U. (1993) Nature 365, 810-816]. Upon binding poly(L-proline), the fluorescence of both tyrosines and tryptophans of profilin is enhanced 2.2-fold. A minimum of 10 prolines [three turns of poly(L-proline) helix II] is necessary to obtain binding (KD = 50 microM), the optimum size being larger than 10. Binding of poly(L-proline) is extremely fast, with k+ > 200 microM-1 s-1 at 10 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
We expressed in Escherichia coli the vaccinia virus gene for a protein similar to vertebrate profilins, purified the recombinant viral profilin, and characterized its interactions with actin and polyphosphoinositides. Compared with cellular profilins, this viral profilin has a low affinity (Kd > or = 35 microM) for human platelet actin monomers, a weak effect on the exchange of the nucleotide bound to the actin, and no detectable affinity for poly(L-proline). Vaccinia profilin binds to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in micelles and large unilamellar vesicles, but not to phosphatidylserine or phosphatidylcholine. Kinetic analysis by surface plasmon resonance showed that both vaccinia and amoeba profilins bind slowly to polyphosphoinositides, with association rate constants in the range of (1-4) x 10(4) M-1 s-1. The higher affinity of vaccinia profilin for polyphosphoinositides (Kd = 0.2-8.5 microM) than for actin or poly(L-proline) and the concentration of vaccinia profilin expressed in infected HeLa cells (approximately 20 microM) suggest that vaccinia profilin binds preferentially to PIP and PIP2 in vivo. Consequently, vaccinia profilin is more likely to influence phosphoinositide metabolism than actin assembly. Expression of 7-105 microM vaccinia profilin in a Saccharomyces cerevisiae profilin null mutant did not rescue the null phenotype, so that the affinity of vaccinia profilin for phosphoinositides alone is insufficient for normal profilin function in yeast.
Article
Within hours of Listeria monocytogenes infection, host cell actin filaments form a dense cloud around the intracytoplasmic bacteria and then rearrange to form a polarized comet tail that is associated with moving bacteria. We have devised a cell-free extract system capable of faithfully reconstituting L. monocytogenes motility, and we have used this system to demonstrate that profilin, a host actin monomer-binding protein, is necessary for bacterial actin-based motility. We find that extracts from which profilin has been depleted do not support comet tail formation or bacterial motility. In extracts and host cells, profilin is localized to the back half of the surface of motile L. monocytogenes, the site of actin filament assembly in the tail. This association is not observed with L. monocytogenes mutants that do not express the ActA protein, a bacterial gene product necessary for motility and virulence. Profilin also fails to bind L. monocytogenes grown outside of host cytoplasm, suggesting that at least one other host cell factor is required for this association.
Article
We have isolated a 1.7 kbp cDNA encoding a 140 amino acid protein (15.1 kDa, pI 5.91) with a high sequence similarity (62%) to human profilin (profilin I). We have termed this variant profilin II. Northern blot analysis showed that profilin II is highly expressed in brain, skeletal muscle and kidney and less strongly in heart, placenta, lung and liver. In addition, three different transcript lengths were detected. Only one transcript of profilin I was found. The expression level of this was low in brain and skeletal muscle, medium in heart and high in placenta, lung, liver and kidney.
Article
Annexin I belongs to a family of calcium-dependent phospholipid-binding and membrane-binding proteins. Although many of the biochemical properties and the three-dimensional structure of this protein are known, its true physiological roles have yet to be thoroughly defined. Its putative functions include participation in the regulation of actin microfilaments dynamics, proposed after the discovery of an interaction with actin. In accordance with this hypothesis, we found that annexin I can also interact with profilin. We used different methods, overlay and surface plasmon resonance (BIAcore), to measure the parameters of the association equilibrium, i.e. k(on), k(off) and k(d). The affinity of annexin I for profilin was between 10(7) M and 10(8) M. High concentrations of KCl did not prevent the interaction, although a slight decrease in affinity was observed. Calcium, a modulator of annexin I functions interfered only marginally with the association, in a manner comparable to magnesium. Proteins or compounds known to interact with annexin I or profilin were found to inhibit the annexin-I--profilin interaction when added in the reaction medium. Recombinant profilin exhibited a slightly lower affinity than natural platelet protein when measured with BIAcore. Due to the submembrane localisation of annexin I and the regulatory activity of profilin on the cytoskeleton, an interaction between annexin I and profilin may therefore be implicated in the regulation of some cellular functions, particularly those governing membrane-cytoskeleton dynamic organization.
Article
A key virulence trait of bacteria and viruses that multiply in the cytoplasm of the infected cell is their ability to direct movement intracellularly and to spread from cell-to-cell. Intracellular movement is effected by harnessing components of the host microfilament system. This mode of locomotion by intracytoplasmic parasites has recently gained much interest as a model to examine microfilament assembly and function. Of the intracellular bacteria employing association with the host cytoskeleton to effect movement, the Gram-positive pathogen Listeria monocytogenes is the most well studied. This review summarizes the current state of the understanding, at the molecular level, of how L. monocytogenes subverts the host cell contractile machinery to meet its own need to move and spread within infected host cells.
Article
To characterize the function of plant profilins in vivo, we expressed two pollen specific Zea mays (maize) profilin isoforms in profilin-minus Dictyostelium discoideum mutants. In maize, profilins exist as a multigene family containing 4 or more members which are highly similar to each other but substantially less similar to profilins from animals and lower eukaryotes. Previously we have shown that D. discoideum profilin-minus cells have an aberrant phenotype due to defects in cell shape, cytokinesis, and development. These defects could be rescued by introducing the pollen-specific profilins 1 or 2 from maize using a newly constructed expression vector. Expression of the heterologous profilins in Dictyostelium clones was assayed by affinity purification of the pollen profilins with poly-proline agarose and by immunoblotting with a polyclonal antiserum raised against maize pollen profilin. In contrast to the profilin-minus mutants, Dictyostelium cells expressing plant profilins showed normal cell shape, contained less F-actin, and were able to form fruiting bodies. These data provide genetic evidence that maize pollen profilins, even though they are specific for a distinct developmental stage, share functional properties with profilin from a lower eukaryote and apparently act as G-actin-sequestering proteins in this system.
Article
Drosophila Enabled is required for proper formation of axonal structures and is genetically implicated in signaling pathways mediated by Drosophila AbI. We have identified two murine proteins, Mena and Evl, that are highly related to Enabled as well as VASP (Vasodilator-Stimulated Phosphoprotein). A conserved domain targets Mena to localized proteins containing a specific proline-rich motif. The association of Mena with the surface of the intracellular pathogen Listeria monocytogenes and the G-actin binding protein profilin suggests that this molecule may participate in bacterial movement by facilitating actin polymerization. Expression of neural-enriched isoforms of Mena in fibroblasts induces the formation of abnormal F-actin-rich outgrowths, supporting a role for this protein in microfilament assembly and cell motility.
Article
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency caused by mutations that affect the WAS protein (WASP) and characterized by cytoskeletal abnormalities in hematopoietic cells. By using the yeast two-hybrid system we have identified a proline-rich WASP-interacting protein (WIP), which coimmunoprecipitated with WASP from lymphocytes. WIP binds to WASP at a site distinct from the Cdc42 binding site and has actin as well as profilin binding motifs. Expression of WIP in human B cells, but not of a WIP truncation mutant that lacks the actin binding motif, increased polymerized actin content and induced the appearance of actin-containing cerebriform projections on the cell surface. These results suggest that WIP plays a role in cortical actin assembly that may be important for lymphocyte function.
Article
Profilin is an ac tin monomer-binding protein which stimulates actin polymerization. Recent studies have revealed that profilin interacts with VASP, Mena, Bni1p, Bnr1p, and mDia, all of which have the proline-rich domain. Here, we isolated three profilin-binding proteins from rat brain cytosol by glutathione S-transferase-profilin affinity column chromatography and identified them as Mena, drebrin, and gephyrin. These proteins had a proline-rich domain and directly interacted with profilin. (C) 1998 Academic Press.
Article
For a detailed analysis of the profilin-actin interaction, we designed several point mutations in bovine profilin I by computer modeling. The recombinant proteins were analyzed in vitro for their actin-binding properties. Mutant proteins with a putatively higher affinity for actin were produced by attempting to introduce an additional bond to actin. However, these mutants displayed a lower affinity for actin than wild-type profilin, suggesting that additional putative bonds created this way cannot increase profilin's affinity for actin. In contrast, mutants designed to have a reduced affinity for actin by eliminating profilin-actin bonds displayed the desired properties in viscosity assays, while their binding sites for poly(L)proline were still intact. The profilin mutant F59A, with an affinity for actin reduced by one order of magnitude as compared to wild-type profilin, was analyzed further in cells. When microinjected into fibroblasts, F59A colocalized with the endogenous profilin and actin in ruffling areas, suggesting that profilins are targeted to and tethered at these sites by ligands other than actin. Profilin null cells of Dictyostelium were transfected with bovine wild-type profilin I and F59A. Bovine profilin I, although expressed to only approximately 10% of the endogenous profilin level determined for wild-type Dictyostelium, caused a substantial rescue of the defects observed in profilin null amoebae, as seen by measuring the growth of colony surface areas and the percentage of polynucleated cells. The mutant protein was much less effective. These results emphasize the highly conserved biological function of profilins with low sequence homology, and correlate specifically their actin-binding capacity with cell motility and proliferation.
Article
Mammalian enabled (Mena) is a member of a protein family thought to link signal transduction pathways to localized remodeling of the actin cytoskeleton. Mena binds directly to Profilin, an actin-binding protein that modulates actin polymerization. In primary neurons, Mena is concentrated at the tips of growth cone filopodia. Mena-deficient mice are viable; however, axons projecting from interhemispheric cortico-cortical neurons are misrouted in early neonates, and failed decussation of the corpus callosum as well as defects in the hippocampal commissure and the pontocerebellar pathway are evident in the adult. Mena-deficient mice that are heterozygous for a Profilin I deletion die in utero and display defects in neurulation, demonstrating an important functional role for Mena in regulation of the actin cytoskeleton.
Article
The actin regulatory protein profilin is targeted to specific cellular regions through interactions with highly proline-rich motifs embedded within its binding partners. New X-ray crystallographic results demonstrate that profilin, like SH3 domains, can bind proline-rich ligands in two distinct amide backbone orientations. By further analogy with SH3 domains, these data suggest that non-proline residues in profilin ligands may dictate the polarity and register of binding, and the detailed organization of the assemblies involving profilin. This degeneracy may be a general feature of modules that bind proline-rich ligands, including WW and EVH1 domains, and has implications for the assembly and activity of macromolecular complexes involved in signaling and the regulation of the actin cytoskeleton.
Article
p53 mutants in tumours have a reduced affinity for DNA and a reduced ability to induce apoptosis. We describe a mutant with the opposite phenotype, an increased affinity for some p53-binding sites and an increased ability to induce apoptosis. The apoptotic function requires transcription activation by p53. The mutant has an altered sequence specificity and selectively fails to activate MDM2 transcription. Loss of MDM2 feedback results in overexpression of the mutant, but the mutant kills better than wild-type p53 even in MDM2-null cells. Thus the apoptotic phenotype is due to a combination of decreased MDM2 feedback control and increased or unbalanced expression of other apoptosis-inducing p53 target genes. To identify these genes, DNA chips were screened using RNA from cells expressing the apoptosis-inducing mutant, 121F, and a sequence-specificity mutant with the reciprocal phenotype, 277R. Two potential new mediators of p53-dependent apoptosis were identified, Rad and PIR121, which are induced better by 121F than wild-type p53 and not induced by 277R. The 121F mutant kills untransformed MDM2-null but not wild-type mouse embryo fibroblasts and kills tumour cells irrespective of p53 status. It may thus expand the range of tumours which can be treated by p53 gene therapy.
Article
Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, alpha-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.