The use of HA-Biocer in the complex treatment of aggressive periodontal diseases.

Department of Periodontology, Medical University of Lublin, Lublin, Poland.
Annales Universitatis Mariae Curie-Skłodowska. Sectio D: Medicina 02/2003; 58(1):231-5.
Source: PubMed


The aim of the work was clinical and radiological evaluation of the HA-Biocer implant material in the complex conservative and surgical treatment of the advanced changes in marginal periodontium. Highly statistically important reduction of the attachment loss CAL and pockets depth PPD were obtained.

11 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydroxyapatite, a synthetic calcium phosphate ceramic, is used as a biomaterial for the restoration of human hard tissue as well as in techniques which aim to regenerate periodontal tissues. Generally, hydroxyapatite is believed to have osteoconductive effects and to be non-bioresorbable but not to induce to periodontal tissue regeneration. No report has been found on responses of periodontal ligament cells (PDLC), the main contributor to periodontal tissue regeneration, to nanoparticles of hydroxyapatite. The objective of this study was to investigate the possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Using a sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved to comprise nanoparticles by transmission electron microscope examination. The primary periodontal ligament cells were cultured on dense particle hydroxyapatite and nanometer particle hydroxyapatite. The effects on proliferation of periodontal ligament cells on dense and nanoparticle hydroxyapatite were examined in vitro using a methyl thiazolil tetracolium (MTT) test. The intercellular effects were studied with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). In addition, the influence of the two materials on osteogenic differentiation was determined through measurement of alkaline phosphatase activity and flow cytometry. About 2, 3, and 4 days after treatment with nanoparticles of hydroxyapatite, the proliferation activity of the PDLC increased significantly compared with those proliferating on dense hydroxyapatite and of control PDLC, but no significant difference was found between the PDLC proliferation on dense hydroxyapatite and the control PDLCs. After 3 and 5 days' incubation with nanoparticles of hydroxyapatite, alkaline phosphatase activity was significantly increased as compared to PDLCs incubated with dense hydroxyapatite and control PDLCs. Intracellular engulfment was found in the cultured cells with nanophase hydroxyapatite under electron microscopy. The results suggest that nanophase hydroxyapatite can promote proliferation and osteogenic differentiation of periodontal ligament cells and further that it may be used as a bioresorbable agent in osseous restoration.
    Full-text · Article · Jun 2007 · Journal of Materials Science Materials in Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.
    No preview · Article · May 2012 · Journal of Materials Science Materials in Medicine