Enhancement of Cardiac L-Type Ca2+ Currents in Transgenic Mice with Cardiac-Specific Overexpression of CYP2J2

Harvard University, Cambridge, Massachusetts, United States
Molecular Pharmacology (Impact Factor: 4.13). 12/2004; 66(6):1607-16. DOI: 10.1124/mol.104.004150
Source: PubMed


CYP2J2 is abundant in cardiomyocytes and is involved in the metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs), which affect multiple cell functions. In this study, we investigated the effect of overexpression of CYP2J2 on cardiac L-type Ca2+ currents (ICa) in adult transgenic mice. Cardiac-specific overexpression of CYP2J2 was achieved using the alpha-myosin heavy chain promoter. ICa was recorded from isolated ventricular cardiomyocytes. Compared with the wild-type cardiomyocytes (n = 60), the density of ICa was significantly increased by 40 +/- 9% in the CYP2J2 transgenic cardiomyocytes (n = 71; P < 0.001). N-Methylsulfonyl-6-(2-proparglyloxyphenyl)hexanamide (MS-PPOH), a specific inhibitor of EET biosynthesis, and clotrimazole, a cytochrome P450 inhibitor, significantly reduced ICa in both wild-type and transgenic cardiomyocytes; however, MS-PPOH inhibited ICa to a greater extent in the CYP2J2 transgenic cells (n = 10) than in the wild-type cells (n = 10; P < 0.01). Addition of 11,12-EET significantly restored ICa in MS-PPOH-treated cells. Intracellular dialysis with either of two inhibitory monoclonal antibodies against CYP2J2 significantly reduced ICa in both wild-type and transgenic mice. Membrane-permeable 8-bromo-cAMP and the beta-adrenergic agonist isoproterenol significantly reversed the monoclonal antibody-induced inhibition of ICa. In addition, the total protein level of the alpha1 subunit of the Cav1.2 L-type Ca2+ channel was not altered in CYP2J2 transgenic hearts, but the phosphorylated portion was markedly increased. In conclusion, overexpression of CYP2J2 increases ICa in CYP2J2 transgenic cardiomyocytes via a mechanism that involves cAMP-protein kinase A-dependent phosphorylation of the L-type Ca2+ channel.

Download full-text


Available from: John R Falck, Jan 08, 2016
  • Source
    • "Polyclonal antibodies raised against CYP4A11 and CYP4F2 were purchased from Research Diagnostics, Inc. (Concord, MA) (1 mg of IgG/ml). A monoclonal antibody raised against CYP2J2, MAb-1 (6-2-16-1, lot A1), and a control monoclonal antibody against egg lysozyme were generated in mouse hybridoma cells as described previously (Xiao et al., 2004) and were used for the immunoinhibition study. A rabbit polyclonal antibody raised against the CYP2J2- specific peptide HMDQNFGNRPVTPMR (amino acids 103–117, anti-CYP2J2pep1) (King et al., 2002) was used for Western blot analysis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminobenzotriazole and the requirement for NADPH. Apparent K(m) and V(max) values ranged from 0.6 to 2.4 microM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid omega-hydroxylation rates (r(2) = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3-18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics.
    Preview · Article · Nov 2007 · Drug Metabolism and Disposition
  • Source
    • "Polyclonal antibody against CYP2J2 (40 mg IgG/ml) was also a gift from Dr. Funae (Hashizume et al., 2001, 2002). Monoclonal antibody against CYP2J2 (1.1 mg IgG/ml) and a control monoclonal antibody against egg lysozyme were generated in mouse hybridoma cells as described previously (Gelboin et al., 1998; Krausz et al., 2000; Xiao et al., 2004). Supersomes prepared from baculovirus-infected insect cells expressing human P450 enzymes and NADPH-cytochrome P450 reductase were purchased from BD Gentest (Woburn, MA). "
    [Show abstract] [Hide abstract]
    ABSTRACT: DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime] is biotransformed to the potent antiparasitic diamidine DB75 [2,5-bis(4-amidinophenyl) furan] by sequential oxidative O-demethylation and reductive N-dehydroxylation reactions. Previous work demonstrated that the N-dehydroxylation reactions are catalyzed by cytochrome b5/NADH-cytochrome b5 reductase. Enzymes responsible for catalyzing the DB289 O-demethylation pathway have not been identified. We report an in vitro metabolism study to characterize enzymes in human liver microsomes (HLMs) that catalyze the initial O-demethylation of DB289 (M1 formation). Potent inhibition by 1-aminobenzotriazole confirmed that M1 formation is catalyzed by P450 enzymes. M1 formation by HLMs was NADPH-dependent, with a Km and Vmax of 0.5 microM and 3.8 nmol/min/mg protein, respectively. Initial screening showed that recombinant CYP1A1, CYP1A2, and CYP1B1 were efficient catalysts of M1 formation. However, none of these three enzymes was responsible for M1 formation by HLMs. Further screening showed that recombinant CYP2J2, CYP4F2, and CYP4F3B could also catalyze M1 formation. An antibody against CYP4F2, which inhibited both CYP4F2 and CYP4F3B, inhibited 91% of M1 formation by HLMs. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, effectively inhibited M1 formation by HLMs. Inhibition studies with ebastine and antibodies against CYP2J2 suggested that CYP2J2 was not involved in M1 formation by HLMs. Additionally, ketoconazole preferentially inhibited CYP4F2, but not CYP4F3B, and partially inhibited M1 formation by HLMs. We conclude that CYP4F enzymes (e.g., CYP4F2, CYP4F3B) are the major enzymes responsible for M1 formation by HLMs. These findings indicate that, in human liver, members of the CYP4F subfamily biotransform not only endogenous compounds but also xenobiotics.
    Preview · Article · Jan 2007 · Drug Metabolism and Disposition
  • Source
    • "Male Sprague-Dawley rats (200–250 g) were used for isolation of cardiac myocytes and mesenteric arterial smooth muscle cells. Transgenic mice with cardiac myocyte-specific overexpression of CYP2J2 and age/sex-matched WT controls were bred and genotyped as previously described (Seubert et al. 2004; Xiao et al. 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP) epoxygenase metabolites of arachidonic acid (AA), are potent sarcolemmal ATP-sensitive K+ (KATP) channel activators. However, activation of cardiac and vascular KATP channels by endogenously produced EETs under physiological intracellular conditions has not been demonstrated and direct comparison of the mechanisms whereby EETs activate the KATP channels in cardiac myocytes versus vascular smooth muscle cells has not been made. In this study, we examined the effects of AA on KATP channels in freshly isolated cardiac myocytes from rats, wild-type (WT) and transgenic mice overexpressing CYP2J2 cDNA, and mesenteric arterial smooth muscle cells from rats. We also compared the activation of cardiac and vascular KATP channels by extracellularly and intracellularly applied 11,12-EET. We found that 1 microm AA enhanced KATP channel activities in both cardiac and vascular smooth muscle cells, and the AA effects were inhibited by preincubation with CYP epoxygenase inhibitors. Baseline cardiac KATP current densities in CYP2J2 transgenic mice were 190% higher than those of WT mice, and both were reduced to similar levels by CYP epoxygenase inhibition. Western blot analysis showed that expression of Kir6.2 and SUR2A was similar between WT and CYP2J2 transgenic hearts. 11,12-EET (5 microm) applied intracellularly enhanced the KATP currents by 850% in cardiac myocytes, but had no effect in vascular smooth muscle cells. In contrast, 11,12-EET (5 microm) applied extracellularly increased KATP currents by 520% in mesenteric arterial smooth muscle cells, but by only 209% in cardiac myocytes. Preincubation with 100 microm m-iodobenzylguanidine or 5 microm myristoylated PKI amide did not alter the activation of cardiac KATP channels by 5 microm 11,12-EET, but significantly inhibited activation of vascular KATP channels. Moreover, EET only enhanced the inward component of cardiac KATP currents, but activated both the inward and outward components of vascular KATP currents. Our results indicate that endogenously derived CYP metabolites of AA potently activate cardiac and vascular KATP channels. EETs regulate cardiac electrophysiology and vascular tone by KATP channel activation, albeit through different mechanisms: the cardiac KATP channels are directly activated by EETs, whereas activation of the vascular KATP channels by EETs is protein kinase A dependent.
    Full-text · Article · Oct 2006 · The Journal of Physiology
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.