Localization of a pH-dependent, A2 subunit-interactive surface within the factor VIIIa A1 subunit

Division of General Medicine, University of Rochester, Rochester, New York, United States
Biochimica et Biophysica Acta (Impact Factor: 4.66). 10/2004; 1701(1-2):25-35. DOI: 10.1016/j.bbapap.2004.06.002
Source: PubMed


Factor VIIIa can be reconstituted from A2 subunit and A1/A3-C1-C2 dimer in a reaction that is facilitated by slightly acidic pH. We recently demonstrated that a truncated A1 (A1(37-336)) possessed markedly reduced affinity for A2 compared with intact A1, but retained 30% of native factor VIIIa activity in the presence of A3-C1-C2. We now identify A1-interactive regions for A2 using A1 fragments derived from a limited tryptic digest. Unfractionated trypsin-cleaved A1 inhibited reconstituted factor VIIIa activity. Two fragments, designated A1(37-121) and A1(221-336), markedly inhibited factor VIIIa reconstitution with either native A1 (K(i)=340 and 194 nM, respectively) or with A1(37-336) (K(i)=69 and 116 nM, respectively) at pH 6.0. A third fragment designated A1(122-206) did not possess inhibitory activity. At pH 7.2, the A1(221-336) partially inhibited reconstitution, whereas the A1(37-121) possessed little if any inhibitory activity. Both fragments inhibited factor VIIIa reconstitution as judged by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1 forms at pH 6.0. Furthermore, covalent cross-linking between A2 and A1(37-121) but not A1(221-336) was observed following reaction with a zero-length cross-linker. These findings demonstrate the presence of an extended, pH-dependent A2-interactive surface within regions 37-121 and 221-336 of A1. This interactive surface appears conformationally labile in the truncated A1 as judged by its apparent stabilization following association with A3-C1-C2.

3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Factor VIII, a non-covalent heterodimer comprised of a heavy chain (A1-A2-B domains) and light chain (A3-C1-C2 domains), circulates as an inactive procofactor in complex with von Willebrand factor. Metal ions are critical to the integrity of factor VIII, with Cu and Ca ions stabilizing the heterodimer and generating the active conformation, respectively. Activation of factor VIII catalyzed by thrombin appears dependent upon interactions with both anion-binding exosites I and II, and converts the heterodimer to the active cofactor, factor VIIIa. This protein, comprised of A1, A2, and A3-C1-C2 subunits, is labile due to weak affinity of the A2 subunit. Association of factor VIIIa with factor IXa to form the intrinsic factor Xase complex is membrane-dependent and involves multiple inter-protein contacts that remain poorly characterized. This complex catalyzes the conversion of factor X to factor Xa, a reaction that is essential for the propagation phase of coagulation. The role of factor VIIIa in this complex is to increase the catalytic efficiency for factor Xa generation by several orders of magnitude. Mechanisms for the down-regulation of factor Xase focus upon inactivation of the cofactor and include dissociation of the A2 subunit as well as activated protein C-catalyzed proteolysis.
    No preview · Article · Mar 2006 · International Journal of Hematology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Factor VIII (FVIII) is activated by thrombin to the labile FVIIIa, a heterotrimer of A1, A2 and A3C1C2 subunits, which serves as a cofactor for FIXa. A primary reason for the instability of FVIIIa is the tendency for the A2 subunit to dissociate from FVIIIa leading to an inactive cofactor and consequent loss of FXase activity. Based on our finding of low-specific activity and a fast decay rate for a FVIII point mutation of Glu1829 to Ala (E1829A), we examined whether residue Glu1829 in the A3 subunit is important for A2 subunit retention. The rate of activity decay of E1829A was approximately fourteen fold faster than wild-type (wt) FVIIIa and this rate was reduced in the presence of added A2 subunit. Specific activity values for E1829A measured by one-stage and two-stage assays were approximately 14% and approximately 11%, respectively, compared with wt FVIII. Binding affinity for the A1 subunit to E1829A-A3C1C2 was comparable to wt A3C1C2 (K(d) = 20.1 +/- 3.4 nM for E1829A, 15.3 +/- 3.7 nM for wt), whereas A2 subunit affinity for the A1/A3C1C2 dimer forms was reduced by approximately 3.6-fold as a result of the mutation (K(d) = 526 +/- 107 nM for E1829A, 144 +/- 21 nM for wt). As modeling data suggest that Glu1829 is located at the A2-A3 domain interface these results are consistent with Glu1829 contributing to the interactions involved with A2 subunit retention in FVIIIa.
    Preview · Article · Jun 2007 · Journal of Thrombosis and Haemostasis