Factor XIII V34L polymorphism modulates the risk of chronic venous leg ulcer progression and extension

Department of Biomedical Sciences and Advanced Therapies, Center Study Haemostasis and Thrombosis, University of Ferrara, Corso Giovecca 203, I-14400 Ferrara, Italy.
Wound Repair and Regeneration (Impact Factor: 2.75). 09/2004; 12(5):512-7. DOI: 10.1111/j.1067-1927.2004.012503.x
Source: PubMed


Low Factor XIII (FXIII) activity has been reported in the blood of patients with chronic venous leg ulcer (CVU). In vivo studies have described increased wound healing in CVU patients treated with FXIII concentrate, and in vitro studies have shown increased regenerative capacity in FXIII-treated fibroblasts. In addition, a common G-to-T polymorphism in the FXIIIA-subunit gene (V34L) significantly increases the activity and modifies the cross-linking properties of the FXIII molecule and this variant has been investigated as a protective factor against thrombosis, a recognized risk factor for CVU establishment. Therefore, the role of FXIII levels, FXIII V34L, FVR506Q, and FIIG20210A, common gene polymorphisms in the pathogenesis of CVU was investigated. Ninety-one patients with CVU and 195 healthy controls (91 of them sex- and age-matched) were PCR-genotyped for the FXIIIV34L, FVR506Q, and FIIG20210A substitutions and FXIIIA-subunit levels were determined by immuno-electrophoresis. The extent of the venous ulcer surface in patients was measured by computer software. The allele frequency and the genotype distribution of the FXIII polymorphism did not show significant differences between the whole group of cases and controls as well as prothrombin variants did. On the contrary, the FVR506Q variant (FV Leiden) allele was more frequent in patients, yielding a significant OR value of 5.93 (95 percent CI, 1.83-19.17; p= 0.003). Considering only CVU cases secondary to a post-thrombotic syndrome (n= 24), FV Leiden yielded a greater OR value of 16.08 (95 percent CI, 4.33-59.6; p < 0.0001). When the CVU cases were stratified by the three possible FXIII genotypes, a significant trend toward a lower mean value of the ulcerated area was clearly evident as the number of the polymorphic alleles (L34) increased in the genotype of patients (VV = 11.9 cm(2,)+/- 23.6; VL = 6.1 cm(2,)+/- 6.9; LL = 4.1 cm(2,)+/- 2.8; p= 0.01). On the other hand, FXIIIA antigen levels were similar between CVU cases and matched controls, but 11 percent of cases had FXIII deficiency (FXIIIA </= 0.65 U/ml; p= 0.003) and they showed a greater mean extension of the lesion if compared with the remaining cases without FXIIIA deficiency (14.5 cm(2), +/- 20.2 vs. 9.0 cm(2), +/- 6.3; p= 0.08). We conclude that FXIII antigen levels and FXIII V34L polymorphism may play a crucial role in the complex cascade of CVU pathophysiology, being significantly related to the CVU progression and extension because of the direct effects they have on the FXIII molecular activity.

Download full-text


Available from: Monica De Mattei, Dec 12, 2013
  • Source
    • "Nevertheless , genotype distribution was similar in cases and controls . ( Gemmati et al , 2004 ) In this same study , the factor V ( F5 ) Leiden gene but not the prothrombin ( F2 ) G20210A SNP was associated with leg ulcer . The common haemochromatosis mutation was associated with the likelihood of having chronic venous leg ulcers . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cutaneous leg ulcers are common in sickle cell anaemia and their risk might be genetically determined. Sickle cell anaemia patients were studied to examine the relationship of leg ulcers with haemolysis and with single nucleotide polymorphisms (SNPs) in candidate genes that could affect sickle vasoocclusion. Leg ulcer patients had lower haemoglobin levels and higher levels of lactate dehydrogenase, bilirubin, aspartate transaminase and reticulocytes than did control patients with sickle cell anaemia but without leg ulcers. Age-adjusted comparisons showed that sickle cell anaemia-alpha thalassaemia was more frequent among controls than cases. These results strongly suggested that the likelihood of having leg ulcers was related to the intensity of haemolysis. 215 SNPs in more than 100 candidate genes were studied. Associations were found with SNPs in Klotho, TEK and several genes in the TGF-beta/BMP signalling pathway by genotypic association analyses. KL directly or indirectly promotes endothelial nitric oxide (NO) production and the TEK receptor tyrosine kinase is involved in angiogenesis. The TGF-beta/BMP signalling pathway modulates wound healing and angiogenesis, among its other functions. Haemolysis-driven phenotypes, such as leg ulcers, could be improved by agents that reduce sickle erythrocyte density or increase NO bioavailability.
    Full-text · Article · Jul 2006 · British Journal of Haematology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been demonstrated recently that coagulation factor XIII (FXIII) plays an extraordinary role in myocardial healing after infarction, improving survival in a mouse model. Common FXIII gene variants (i.e. FXIIIA-V34L and FXIIIB-H95R) significantly influence the molecular activity. To evaluate whether there is a relationship between the two FXIII gene variants and survival in patients after myocardial infarction (MI), V34L and H95R were PCR-genotyped in a cohort of 560 MI cases and follow-up was monitored. Cases with ST-segment elevation MI (STEMI) were 416 (74.3%) and 374 of these were treated with primary percutaneous coronary intervention (PCI) (89.9%). The remaining 144 patients showed non-ST-segment elevation MI (NSTEMI) at enrollment. The combined endpoint was the occurrence of death, re-infarction, and heart failure. Kaplan-Meier analysis at one year yielded an overall rate for adverse events of 24.5% with a lower incidence in the L34-carriers (28.8% vs 17.1%; log-rank, P = 0.00025), similar to that of the 416 STEMI (23.8%) being (28.0% and 16.9%; VV34- and L34-carriers respectively; log-rank, P = 0.001). Primary PCI-group had a slight lower incidence (22.9%) of adverse events (26.8% and 17.1%; VV34- and L34-carriers respectively; log-rank, P = 0.009). During hospitalization, 506 patients received PCI (374 primary PCI and 132 elective PCI). Significance was conserved also in the overall PCI-group (28.6% and 17.8%; VV34- and L34-carriers respectively; log-rank, P = 0.001). Similar findings were observed at 30 days follow-up. Cases carrying both FXIII variants had improved survival rate (log-rank, P = 0.019). On the other hand, minor bleeding complications were found increased in L34-carriers (P = 0.0001) whereas major bleeding complications were not. Finally, more direct evidence on the role of FXIII molecule on survival might come from the fact that despite significant FXIII antigen reductions observed in cases after MI, regardless the FXIII genotype considered, L34-carriers kept almost normal FXIII activity (VV34- vs L34-carriers; P < 0.001). We conclude that FXIII L34-allele improves survival after MI in all the groups analyzed, possibly through its higher activity associated with assumable positive effects on myocardial healing and recovered functions. Genetically determined higher FXIII activity might influence post-MI outcome. This paves the way for using FXIII molecules to improve myocardial healing, recovery of functions, and survival after infarction.
    Full-text · Article · Jan 2007 · Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Venous leg ulceration is a severe complication of chronic venous insufficiency. Despite numerous studies, understanding of the possible mechanisms involved in venous ulceration development remains incomplete. It is assumed that, in addition to well-documented behavioral and/or environmental conditions, as yet poorly defined genetic risk factors may play important roles in chronic wound progression or healing. It is difficult to overestimate the clinical usefulness of genetic screening in the determination of the risk of wound development and/or its healing course. From a pharmacogenomic perspective, genetic screening may aid in the planning of individualized treatment. In addition, the detection of venous ulcer-promoting gene variants may facilitate the decision to introduce prophylaxis or, if necessary, appropriate treatment for venous insufficiency, long before a leg ulcer develops. In addition to significant economic benefits, this approach would reduce the risk of health- and life-threatening conditions. In this review, we focus on several gene mutations/polymorphisms with previously documented significance in leg ulceration pathophysiology, and briefly speculate about possible candidates for further study.
    No preview · Article · Mar 2010 · Molecular Medicine Reports
Show more