Molecular Analysis of Structural Abnormalities in Papillary Thyroid Carcinoma Genome

Russian Academy of Medical Sciences
Molekuliarnaia biologiia 06/2004; 38(4):642-53. DOI: 10.1023/B:MBIL.0000037006.90193.f6
Source: PubMed


Rearrangements of the RET proto-oncogene (RET/PTC) and BRAF gene mutations are the major genetic alterations in the etiopathogenesis of papillary thyroid carcinoma (PTC). We have analyzed a series of 118 benign and malignant follicular cell-derived thyroid tumors for RET/PTC rearrangements and BRAF gene mutations. Oncogenic rearrangements of RET proto-oncogene was revealed by semiquantitative RT-PCR of simultaneously generated fragments corresponding to tyrosine kinase (TK) and extracellular RET domains. The clear quantitative shift toward the TK fragment is indicative for the presence of RET rearrangements. The overall frequency of RET/PTC rearrangements in PTC was 14% (12 of 85), including 7 RET/PTC1, 2 RET/PTC3, 1 deltaRFP/RET and 2 apparently uncharacterized rearrangements. The most common T1796A transversion in BRAF gene was detected in 55 of 91 PTC (60%) using mutant-allele-specific PCR. We also identified two additional mutations: the substitution G1753A (E585K) and a case of 12-bp deletion in BRAF exon 15. Moreover, there was no overlap between PTC harboring BRAF and RET/PTC mutations, which altogether were present in 75.8% of cases (69 of 91). Taken together, our observations are consistent with the notion that BRAF mutations appear to be an alternative pathway to oncogenic MAPK activation in PTCs without RET/PTC activation. Neither RET/PTC rearrangements nor BRAF muta-tions were detected in any of 3 follicular thyroid carcinomas, 11 follicular adenomas and 13 nodular goiters. The high prevalence of BRAF mutations and RET/PTC rearrangements in PTCs and the specificity of these alterations to PTC make them potentially important markers for the preoperative tumor diagnosis.

4 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic alteration is the driving force for thyroid tumorigenesis and progression, based upon which novel approaches to the management of thyroid cancer can be developed. A recent important genetic finding in thyroid cancer is the oncogenic T1799A transversion mutation of BRAF (the gene for the B-type Raf kinase, BRAF). Since the initial report of this mutation in thyroid cancer 2 years ago, rapid advancements have been made. BRAF mutation is the most common genetic alteration in thyroid cancer, occurring in about 45% of sporadic papillary thyroid cancers (PTCs), particularly in the relatively aggressive subtypes, such as the tall-cell PTC. This mutation is mutually exclusive with other common genetic alterations, supporting its independent oncogenic role, as demonstrated by transgenic mouse studies that showed BRAF mutation-initiated development of PTC and its transition to anaplastic thyroid cancer. BRAF mutation is mutually exclusive with RET/PTC rearrangement, and also displays a reciprocal age association with this common genetic alteration in thyroid cancer. The T1799A BRAF mutation occurs exclusively in PTC and PTC-derived anaplastic thyroid cancer and is a specific diagnostic marker for this cancer when identified in cytological and histological specimens. This mutation is associated with a poorer clinicopathological outcome and is a novel independent molecular prognostic marker in the risk evaluation of thyroid cancer. Moreover, preclinical and clinical evaluations of the therapeutic value of novel specific mitogen-activated protein kinase pathway inhibitors in thyroid cancer are anticipated. This newly discovered BRAF mutation may prove to have an important impact on thyroid cancer in the clinic.
    Preview · Article · Jul 2005 · Endocrine Related Cancer
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a somatic point mutation of the B-RAF gene (V600E) has been identified as the most common genetic event in papillary thyroid carcinoma (PTC), with a prevalence variable among different series. Since discordant data on the clinico-pathologic features of B-RAF mutated PTC are present in the literature, the aim of the present co-operative study was to establish the prevalence of this genetic alteration and to perform a genotype-phenotype correlation in a large cohort of patients with PTC. To this purpose, a series of 260 sporadic PTCs with different histological variants were included in the study. The mutational analysis of the B-RAF gene was performed either by RT-PCR followed by single-stranded conformational polymorphism or by PCR and direct sequencing. Statistical analyses were obtained by means of chi2/Fisher's exact test and t-test. Overall, a heterozygous T > A transversion at nucleotide 1799 (V600E) was found in 99 out of 260 PTCs (38%). According to the histological type of the tumor, the B-RAF (V600E) mutation was present in 48.3% of cases of classic PTCs (85 out of 176), in 17.6% (nine out of 51) of follicular variants of PTCs, in 21.7% (five out of 23) in other PTC variants and in none of the ten poorly differentiated tumors. B-RAF (V600E) was significantly associated with the classic variant of PTC (P = 0.0001) and with an older age at diagnosis (P = 0.01). No statistically significant correlation was found among the presence of B-RAF (V600E) and gender, tumor node metastasis (TNM), multicentricity of the tumor, stage at diagnosis and outcome. In conclusion, the present study reports the prevalence of B-RAF (V600E) (38%) in the largest series of sporadic PTCs, including 260 cases from three different Italian referring centers. This prevalence is similar to that calculated by pooling together all data previously reported, 39.6% (759 out of 1914 cases), thus indicating that the prevalence of this genetic event lies around 38-40%. Furthermore, B-RAF (V600E) was confirmed to be associated with the papillary growth pattern, but not with poorer differentiated PTC variants. A significant association of B-RAF mutation was also found with an older age at diagnosis, the mutation being very rare in childhood and adolescent PTCs. Finally, no correlation was found with a poorer prognosis and a worse outcome after a median follow-up of 72 months.
    No preview · Article · Jun 2006 · Endocrine Related Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A single hotspot mutation at nucleotide 1799 of the BRAF gene has been identified as the most common genetic event in papillary thyroid carcinoma (PTC), with a prevalence of 29-83%. To use a PCR assay to molecularly characterise the BRAF activating point mutation in a series of PTC and benign thyroid cases and correlate the mutation results with histological findings. Formalin-fixed paraffin-embedded (FFPE) sections were evaluated for the BRAF V600E mutation using LightCycler PCR with allele-specific fluorescent probe melting curve analysis (LCPCR). 42 (37 PTC; 5 benign) surgical tissue samples were analysed for the BRAF V600E activating point mutation. Using LCPCR and direct DNA sequencing, the BRAF mutation was identified in 23/37 (62.2%) PTC FFPE samples. DNA sequencing results demonstrated confirmation of the mutation. Detection of BRAF-activating mutations in PTC suggests new approaches to management and treatment of this disease that may prove worthwhile. Identification of the BRAF V600E activating mutation in routine FFPE pathology samples by a rapid laboratory method such as LCPCR could have significant value.
    Full-text · Article · Dec 2007 · Journal of clinical pathology
Show more