Pressure induced phase transitions in hydroquinone

Article · November 2004with6 Reads
DOI: 10.1063/1.1792553 · Source: PubMed
Abstract
High pressure behavior of alpha-hydroquinone (1,4-dihydroxybenzene) has been studied using Raman spectroscopy up to pressures of 19 GPa. Evolution of Raman spectra suggests two transitions around 3.3 and 12.0 GPa. The first transition appears to be associated with the lowering of crystal symmetry. Above 12.0 GPa, Raman bands in the internal modes region exhibit continuous broadening suggesting that the system is progressively evolving into a disordered state. This disorder is understood as arising due to distortion of the hydrogen-bonded cage across the second transition around 12 GPa.
  • [Show abstract] [Hide abstract] ABSTRACT: The ultrafast dynamics of solutions of phenol and two phenol derivatives--hydroquinone (1,4-benzenediol) and pyrocatechol (1,2-benzenediol)--have been studied with Optically Heterodyne-Detected Optical Kerr-Effect (OHD-OKE) spectroscopy. The solvents, methanol and acetonitrile, were selected to provide strong and weak solvent-solute hydrogen-bonding interactions, respectively, while pyrocatechol features an intramolecular hydrogen bond. Together these provide a series of model systems for polypeptides such as polytyrosine, which facilitate the direct study of inter- and intramolecular hydrogen bonding. A broad contribution to the Raman spectral density of the methanol solutions at frequencies between 150 and 300 cm(-1) has been observed that is absent in acetonitrile. This contribution has been assigned to solvent-solute hydrogen-bond stretching vibrations. The OHD-OKE response of poly-L-tyrosine has been measured and was found to contain a similar contribution. Density functional theory geometry optimizations and normal mode calculations have been performed using the B3LYP hybrid functional and 6-311++G** basis set. These have yielded a complete assignment of the low-frequency Raman and far-infrared spectra of pyrocatechol for the first time, which has provided information on the nature of the intramolecular hydrogen bond of pyrocatechol.
    Article · Nov 2005
  • [Show abstract] [Hide abstract] ABSTRACT: We have obtained an analytical expression for the two-dimensional potential energy function for internal rotation in 1,2-dihydroxybenzenes, allowing us to use perturbation theory methods to calculate and interpret the torsional spectra of these compounds.
    Full-text · Article · Mar 2006
  • [Show abstract] [Hide abstract] ABSTRACT: Pure water forms 15 crystalline ices at different temperatures and pressures, and its solutions containing small molecules form three crystallographically distinct clathrates. Its vapours deposited on a substrate at T < 100 K produce a porous amorphous solid and pure water vitrifies (Tg = 136 K) when hyperquenched in micron-size droplets. At a temperature below 140 K, hexagonal and cubic ice collapse when pressure exceeds ∼1 GPa to a ∼30% denser amorphous solid, which on heating at ambient pressure transforms to an amorphous solid with density similar to that of hexagonal ice. In this essay, we describe (i) the thermal conductivity of the ices and clathrates and the thermal conductivity and heat capacity of water's amorphous solids, their thermodynamic paths and their transformations, and (ii) the dielectric relaxation time of ultraviscous water formed on heating the amorphous solids. We also describe the characteristics of pressure collapse and subsequent amorphization of hexagonal and cubic ices that occurs over a period of several days according to a stretched exponential kinetics and a pressure-, and temperature-dependent rate constant. This process is attributed to the production of lattice faults during deformation of the ice and the consequent distribution of the Born instability pressures. This ultimately produces a kinetically unstable high-energy amorphs in the same manner as random deformation of crystals produces kinetically unstable high-energy amorphs, with density and properties depending upon their temperature–pressure–time history. On heating at 1 GPa pressure, the pressure-amorphized solid relaxes to a lower energy state, becoming ultraviscous water at 140 K. But on heating at ambient pressure, it irreversibly transforms slowly to a low-density amorph that differs from glassy water and vapour-deposited amorphous solid.
    Article · Sep 2007
  • [Show abstract] [Hide abstract] ABSTRACT: Pressure-induced transformation of γ-IMC [1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid] is analyzed from Raman scattering investigations in the low-frequency range of 10–250 cm−1 and the high frequency region between 1550 and 1750 cm−1, where CO stretching vibrations are usually observed. At room temperature, by pressurization from atmospheric pressure up to 4 GPa, γ-IMC undergoes a collapse transformation into a high-pressure crystalline form, induced by large rearrangement in the hydrogen-bonded network associated with molecular conformational changes. The Raman spectrum of the high-pressure crystal is similar to that of the α form, which is denser than the γ form and metastable with respect to γ-IMC at atmospheric pressure. Upon further compression a solid-state amorphization is observed via the breakdown of hydrogen bonds. The Raman line shape of the high-pressure amorphous form is different from that of the vitreous state (or thermal glass obtained by quenching the liquid), suggesting the existence of a high-density amorphous state. By release of pressure, this high-density amorphous state transforms into the thermal glass. This transformation can be interpreted as a transformation between a high-density amorphous to a low-density amorphous state, which could be associated with a polyamorphic transformation.
    Article · Mar 2008
  • [Show abstract] [Hide abstract] ABSTRACT: Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.
    Full-text · Article · Nov 2008
  • [Show abstract] [Hide abstract] ABSTRACT: The effects of high pressure on the structural stability of the melamine-boric acid adduct (C3N6H(6).2H3BO3, M.2B), a three-dimensional hydrogen-bonded supramolecular architecture, were studied by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy. M.2B exhibited a high compressibility and a strong anisotropic compression, which can be explained by the layerlike crystal packing. Furthermore, evolution of XRD patterns and Raman spectra indicated that the M.2B crystal undergoes a reversible pressure-induced amorphization (PIA) at 18 GPa. The mechanism for the PIA was attributed to the competition between close packing and long-range order. Ab initio calculations were also performed to account for the behavior of hydrogen bonding under high pressure.
    Article · Mar 2009
Show more