Identification and characterization of the human ARD1-NATH protein acetyltransferase complex

Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States
Biochemical Journal (Impact Factor: 4.4). 04/2005; 386(Pt 3):433-43. DOI: 10.1042/BJ20041071
Source: PubMed


Protein acetyltransferases and deacetylases have been implicated in oncogenesis, apoptosis and cell cycle regulation. Most of the protein acetyltransferases described acetylate epsilon-amino groups of lysine residues within proteins. Mouse ARD1 (homologue of yeast Ard1p, where Ard1p stands for arrest defective 1 protein) is the only known protein acetyltransferase catalysing acetylation of proteins at both alpha-(N-terminus) and epsilon-amino groups. Yeast Ard1p interacts with Nat1p (N-acetyltransferase 1 protein) to form a functional NAT (N-acetyltransferase). We now describe the human homologue of Nat1p, NATH (NAT human), as the partner of the hARD1 (human ARD1) protein. Included in the characterization of the NATH and hARD1 proteins is the following: (i) endogenous NATH and hARD1 proteins are expressed in human epithelial, glioma and promyelocytic cell lines; (ii) NATH and hARD1 form a stable complex, as investigated by reciprocal immunoprecipitations followed by MS analysis; (iii) NATH-hARD1 complex expresses N-terminal acetylation activity; (iv) NATH and hARD1 interact with ribosomal subunits, indicating a co-translational acetyltransferase function; (v) NATH is localized in the cytoplasm, whereas hARD1 localizes both to the cytoplasm and nucleus; (vi) hARD1 partially co-localizes in nuclear spots with the transcription factor HIF-1alpha (hypoxia-inducible factor 1alpha), a known epsilon-amino substrate of ARD1; (vii) NATH and hARD1 are cleaved during apoptosis, resulting in a decreased NAT activity. This study identifies the human homologues of the yeast Ard1p and Nat1p proteins and presents new aspects of the NATH and hARD1 proteins relative to their yeast homologues.

Download full-text


Available from: Thomas Arnesen, Aug 14, 2015
  • Source
    • "Because the basal level of nuclear hARD1 is a relatively small fraction of the total expression level, the protein may act primarily in the cytoplasm, where it is more abundant. For example, N-terminal acetylation during protein synthesis, a well-known function of hARD1, occurs cooperatively with NATH in the cytoplasm [18]. After it is imported to the nucleus, however, hARD1 might serve the novel function of contributing to cell cycle progression, which means the subcellular localization imparts diverse functionality to hARD1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Arrest defective 1 (ARD1) is an acetyltransferase that is highly conserved across organisms, from yeasts to humans. The high homology and widespread expression of ARD1 across multiple species and tissues signify that it serves a fundamental role in cells. Human ARD1 (hARD1) has been suggested to be involved in diverse biological processes, and its role in cell proliferation and cancer development has been recently drawing attention. However, the subcellular localization of ARD1 and its relevance to cellular function remain largely unknown. Here, we have demonstrated that hARD1 is imported to the nuclei of proliferating cells, especially during S phase. Nuclear localization signal (NLS)-deleted hARD1 (hARD1ΔN), which can no longer access the nucleus, resulted in cell morphology changes and cellular growth impairment. Notably, hARD1ΔN-expressing cells showed alterations in the cell cycle and the expression levels of cell cycle regulators compared to hARD1 wild-type cells. Furthermore, these effects were rescued when the nuclear import of hARD1 was restored by exogenous NLS. Our results show that hARD1 nuclear translocation mediated by NLS is required for cell cycle progression, thereby contributing to proper cell proliferation.
    Full-text · Article · Aug 2014 · PLoS ONE
  • Source
    • "The human NatB complex seems to be required for cell cycle progression [5]. The Ard1 (Naa10) catalytic subunit of the human NatA complex has been isolated in cytoplasmic and nuclear fractions, which suggests additional functions for Ard1, other than cotranslational N-α-terminal acetylation [7]. Recent work showed that the X-linked Ogden syndrome is caused by a specific missense mutation affecting the Naa10 catalytic subunit of the human NatA complex [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: N-α-terminal acetylation is one of the most common, but least understood modifications of eukaryotic proteins. Although a high degree of conservation exists between the N-α-terminal acetylomes of plants and animals, very little information is available on this modification in plants. In yeast and humans, N-α-acetyltransferase complexes include a single catalytic subunit and one or two auxiliary subunits. Here, we report the positional cloning of TRANSCURVATA2 (TCU2), which encodes the auxiliary subunit of the NatB N-α-acetyltransferase complex in Arabidopsis. The phenotypes of loss-of-function tcu2 alleles indicate that NatB complex activity is required for flowering time regulation and for leaf, inflorescence, flower, fruit and embryonic development. In double mutants, tcu2 alleles synergistically interact with alleles of ARGONAUTE10, which encodes a component of the microRNA machinery. In summary, NatB-mediated N-α-terminal acetylation of proteins is pleiotropically required for Arabidopsis development and seems to be functionally related to the microRNA pathway.
    Full-text · Article · Nov 2013 · PLoS ONE
  • Source
    • "However, no in vivo substrates explaining this phenotype are identified. In addition to NatE, NatA, NatB, and NatC are also characterized in higher eukaryotes and shown to be evolutionarily conserved from yeast with respect to both complex composition and substrate specificity [1], [10], [32], [33]. Recently, an additional NAT exclusively present in higher eukaryotes was identified and designated Naa60/NatF. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein Nα-terminal acetylation (Nt-acetylation) is considered one of the most common protein modification in eukaryotes, and 80-90% of all soluble human proteins are modified in this way, with functional implications ranging from altered protein function and stability to translocation potency amongst others. Nt-acetylation is catalyzed by N-terminal acetyltransferases (NATs), and in yeast five NAT types are identified and denoted NatA-NatE. Higher eukaryotes additionally express NatF. Except for NatD, human orthologues for all yeast NATs are identified. yNatD is defined as the catalytic unit Naa40p (Nat4) which co-translationally Nt-acetylates histones H2A and H4.
    Full-text · Article · Sep 2011 · PLoS ONE
Show more

Similar Publications