Methylglyoxal, a Metabolite Derived from Glycolysis, Functions as a Signal Initiator of the High Osmolarity Glycerol-Mitogen-activated Protein Kinase Cascade and Calcineurin/Crz1-mediated Pathway in Saccharomyces cerevisiae

ArticleinJournal of Biological Chemistry 280(1):253-60 · February 2005with10 Reads
DOI: 10.1074/jbc.M408061200 · Source: PubMed
Methylglyoxal (MG) is a typical 2-oxoaldehyde derived from glycolysis, although it inhibits the growth of cells in all types of organism. Hence, it has been questioned why such a toxic metabolite is synthesized via the ubiquitous energy-generating pathway. We have previously reported that expression of GLO1, coding for the major enzyme detoxifying MG, was induced by osmotic stress in a high osmolarity glycerol (HOG)-mitogen-activated protein (MAP) kinase-dependent manner in Saccharomyces cerevisiae. Here we show that MG activates the HOG-MAP kinase cascade. Two osmosensors, Sln1 and Sho1, have been identified to function upstream of the HOG-MAP kinase cascade, and we reveal that MG initiates the signal transduction to this MAP kinase cascade through the Sln1 branch. We also demonstrate that MG activates the Msn2 transcription factor. Moreover, MG activated the uptake of Ca(2+) in yeast cells, thereby stimulating the calcineurin/Crz1-mediated Ca(2+) signaling pathway. We propose that MG functions as a signal initiator in yeast.
    • "In plant cells, MG accumulation has been shown to correlate with increased levels of intracellular oxidative stress, due to the enhanced reactive oxygen species (ROS) production (Maeta et al., 2005; Kalapos, 2008). MG accumulation may indirectly result in increased ROS production by decreasing available GSH levels and by impairing the function of antioxidant enzymes in plants under oxidative stress. "
    [Show abstract] [Hide abstract] ABSTRACT: The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.
    Full-text · Article · Sep 2016
    • "MG production increases considerably during stressful conditions, in which the glycolysis and photosynthesis pathways may become imbalanced, (Richard, 1993) and the MG levels may increase by two-to six-fold (Yadav et al., 2007). The accumulation of MG in plants increases the levels of intracellular oxidative stress due to the production of reactive oxygen species (Maeta et al., 2005; Kalapos, 2008), generates advanced glycation end-products (Thornalley, 2003), disables the mechanisms of the antioxidant defense system (Martins et al., 2001), and interferes with the cell division processes (Ray et al., 1994). MG degradation is initiated by a spontaneous reaction between MG and reduced glutathione (GSH) that forms hemithioacetal, which is then converted into S-Dlactoylglutathione in a reaction catalyzed by GLY-I (Figure 1). "
    [Show abstract] [Hide abstract] ABSTRACT: The element Ni is considered an essential plant micronutrient because it acts as an activator of the enzyme urease. Recent studies have shown that Ni may activate an isoform of glyoxalase I, which performs an important step in the degradation of methylglyoxal (MG), a potent cytotoxic compound naturally produced by cellular metabolism. Reduced glutathione (GSH) is consumed and regenerated in the process of detoxification of MG, which is produced during stress (stress-induced production). We examine the role of Ni in the relationship between the MG cycle and GSH homeostasis and suggest that Ni may have a key participation in plant antioxidant metabolism, especially in stressful situations.
    Full-text · Article · Sep 2015
    • "(Continued) Frontiers in Plant Science | (Maeta et al., 2005). In addition, MG also stimulates Yap1, a bZIP transcription factor that is predominantly distributed in the cytoplasm under normal conditions in yeast but upon MG stimulation translocates to the nucleus and functions in regulating gene expression (Maeta et al., 2004). "
    [Show abstract] [Hide abstract] ABSTRACT: Methylglyoxal (MG) is a toxic metabolite produced primarily as a byproduct of glycolysis. Being a potent glycating agent, it can readily bind macromolecules like DNA, RNA, or proteins, modulating their expression and activity. In plants, despite the known inhibitory effects of MG on growth and development, still limited information is available about the molecular mechanisms and response pathways elicited upon elevation in MG levels. To gain insight into the molecular basis of MG response, we have investigated changes in global gene expression profiles in rice upon exposure to exogenous MG using GeneChip microarrays. Initially, growth of rice seedlings was monitored in response to increasing MG concentrations which could retard plant growth in a dose-dependent manner. Upon exposure to 10 mM concentration of MG, a total of 1685 probe sets were up- or down-regulated by more than 1.5-fold in shoot tissues within 16 h. These were classified into 10 functional categories. The genes involved in signal transduction such as, protein kinases and transcription factors, were significantly over-represented in the perturbed transcriptome, of which several are known to be involved in abiotic and biotic stress response indicating a cross-talk between MG-responsive and stress-responsive signal transduction pathways. Through in silico studies, we could predict 7-8 bp long conserved motif as a possible MG-responsive element (MGRE) in the 1 kb upstream region of genes that were more than 10-fold up- or down-regulated in the analysis. Since several perturbations were found in signaling cascades in response to MG, we hereby suggest that it plays an important role in signal transduction probably acting as a stress signal molecule.
    Full-text · Article · Sep 2015
Show more