Thermostability of the human respiratory syncytial virus fusion protein before and after activation: Implications for the membrane fusion mechanism

Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
Journal of General Virology (Impact Factor: 3.18). 01/2005; 85(Pt 12):3677-87. DOI: 10.1099/vir.0.80318-0
Source: PubMed


Anchorless fusion (F) proteins () of human respiratory syncytial virus (RSV) are seen by electron microscopy as unaggregated cones when the proteolytic cleavage at two furin sites required for membrane-fusion activity is incomplete, but aggregate into rosettes of lollipop-shaped spikes following cleavage. To show that this aggregation occurred by interactions of the fusion peptide, a deletion mutant of lacking the first half of the fusion peptide was generated. This mutant remained unaggregated even after completion of cleavage, supporting the notion that aggregation of involved the fusion peptide. As exposure of the fusion peptide is a key event that occurs after activation of F proteins, the uncleaved and cleaved forms of may represent the pre- and post-active forms of RSV F protein. In an analysis of the structural differences between the two forms, their thermostability before and after proteolytic cleavage was examined. In contrast to other viral proteins involved in membrane fusion (e.g. influenza haemagglutinin), the pre-active (uncleaved) and post-active (cleaved) forms of were equally resistant to heat denaturation, assessed by spectrofluorimetry, circular dichroism or antibody binding. These results are interpreted in terms of the proposed structural changes associated with the process of membrane fusion mediated by RSV F protein.

Full-text preview

Available from:
  • Source
    • "Binding of non-cleaved F proteins to BLPs did not result in aggregation of the BLPs, indicating that the fusion peptide was not exposed. These results are in agreement with other observations showing that non-cleaved RSV F adopts another conformational state than cleaved F, exemplified by different F protein morphologies as observed by electron microscopy [18], [37], [38]. Furthermore, non-cleaved F proteins do not form rosettes that result from hydrophobic interactions between the fusion peptides as is the case for the cleaved F [18], [37], [38]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory syncytial virus (RSV) is an important cause of respiratory tract disease in infants and the elderly. Currently, no licensed vaccine against RSV is available. Here we describe the development of a safe and effective intranasal subunit vaccine that is based on recombinant fusion (F) protein bound to the surface of immunostimulatory bacterium-like particles (BLPs) derived from the food-grade bacterium Lactococcus lactis. Different variants of F were analyzed with respect to their conformation and reactivity with neutralizing antibodies, assuming that F proteins mimicking the metastable prefusion form of RSV F expose a more extensive and relevant epitope repertoire than F proteins corresponding to the postfusion structure. Our results indicate that the recombinant soluble ectodomain of RSV F readily adopts a postfusion conformation, generation of which cannot be prevented by C-terminal addition of a trimerization motif, but whose formation is prevented by mutation of the two furin cleavage sites in F. While the putative postfusion form of F is recognized well by the monoclonal antibody Palivizumab, this is much less so for the more potently neutralizing, prefusion-specific antibodies D25 and AM22. Both addition of the trimerization motif and mutation of the furin cleavage sites increased the reactivity of F with D25 and AM22, with the highest reactivity being observed for F proteins in which both these features were combined. Intranasal vaccination of mice or cotton rats with BLPs loaded with this latter prefusion-like F protein (BLP-F), resulted in the potent induction of F-specific immunoglobulins and in significantly decreased virus titers in the lungs upon RSV challenge. Moreover, and in contrast to animals vaccinated with formalin-inactivated RSV, animals that received BLP-F exhibited high levels of F-specific secretory IgA in the nose and RSV-neutralizing antibodies in sera, but did not show symptoms of enhanced disease after challenge with RSV.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    • "(B) RSV F clone 2 (#514) with a mutation of cleavage site II was further modified with increasing deletions in the fusion peptide starting at Phe137 to Val154 with Δ2, Δ4, Δ6, Δ8, Δ10, Δ12, Δ14, Δ16 and Δ18 amino acid deletions. (C) The modified full length RSV F gene (#683) with a modified cleavage site II (KKQKQQ) and Phe137 - Ser146 fusion domain deletion including RSV F cleavable signal peptide (sp), 27 amino acid peptide [23], hydrophobic transmembrane (tm), and F2 and F1 polypeptides covalently linked by two disulfides. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory Syncytial Virus (RSV) is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F) surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.
    Full-text · Article · Nov 2012 · PLoS ONE
  • Source
    • "We are currently performing direct biochemical mapping of the disulfide linkages to formally demonstrate this. This could explain, in part, the unique thermostability described for the HRSV F protein ECD [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mature F protein of all known isolates of human respiratory syncytial virus (HRSV) contains fifteen absolutely conserved cysteine (C) residues that are highly conserved among the F proteins of other pneumoviruses as well as the paramyxoviruses. To explore the contribution of the cysteines in the extracellular domain to the fusion activity of HRSV F protein, each cysteine was changed to serine. Mutation of cysteines 37, 313, 322, 333, 343, 358, 367, 393, 416, and 439 abolished or greatly reduced cell surface expression suggesting these residues are critical for proper protein folding and transport to the cell surface. As expected, the fusion activity of these mutations was greatly reduced or abolished. Mutation of cysteine residues 212, 382, and 422 had little to no effect upon cell surface expression or fusion activity at 32 degrees C, 37 degrees C, or 39.5 degrees C. Mutation of C37 and C69 in the F2 subunit either abolished or reduced cell surface expression by 75% respectively. None of the mutations displayed a temperature sensitive phenotype.
    Full-text · Article · Feb 2006 · Virology Journal
Show more