Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives

ArticleinJournal of the American Chemical Society 126(47):15322-3 · January 2005with22 Reads
Impact Factor: 12.11 · DOI: 10.1021/ja045208p · Source: PubMed
Abstract

The substitution of chloro or bromo groups in tetracene gives rise to the change of crystal structure, having a substantial effect on carrier transport. Halogenated tetracene derivatives were synthesized and grown into single crystals. Monosubstituted 5-bromo- and 5-chlorotetracenes have the herringbone-type structure, while 5,11-dichlorotetracene has the slipped pi stacking structure. Mobility of 5,11-dichlorotetracene was measured to be as high as 1.6 cm2/V.s in single-crystal transistors. The pi stacking structure, which enhances pi orbital overlap and facilitates carrier transport, may thus be responsible for this high mobility.

Similar publications