Article

Phosphorylation of the Eukaryotic Translation Initiation Factor eIF4E Contributes to Its Transformation and mRNA Transport Activities

NYU Langone Medical Center, New York, New York, United States
Cancer Research (Impact Factor: 9.33). 01/2005; 64(23):8639-42. DOI: 10.1158/0008-5472.CAN-04-2677
Source: PubMed

ABSTRACT

The eukaryotic translation initiation factor eIF4E is dysregulated in a wide variety of human cancers. In the cytoplasm, eIF4E acts in the rate-limiting step of translation initiation whereas in the nucleus, eIF4E forms nuclear bodies and promotes the nucleo-cytoplasmic export of a subset of growth-promoting mRNAs including cyclin D1. The only known post-translational modification of eIF4E is its phosphorylation at S209. Many studies have examined the role of phosphorylation on cap-dependent translation. However, no studies to date have explored the role of phosphorylation on the ability of eIF4E to transform cells. Using mutagenesis and separately a small molecular inhibitor of eIF4E phosphorylation, we show that eIF4E phosphorylation enhances both its mRNA transport function and its transformation activity in cell culture. Thus, phosphorylation of nuclear eIF4E seems to be an important step in control of the mRNA transport and thus the transforming properties of eIF4E.

Download full-text

Full-text

Available from: Katherine Borden, Jan 12, 2015
  • Source
    • "The activation of UBF is regulated by the cell cycle regulator cyclin D1, which in turn is translationally regulated by MNK1-eIF4E signaling (Mamane et al. 2004;Topisirovic et al. 2004). In the current study, RE strongly activated the MNK1-eIF4E-cyclin D1 axis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training‐induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre‐rRNA, and mature rRNA components were measured through 48 h after a single‐bout RE. In addition, the effects of either low‐intensity cycling (active recovery, ACT) or a cold‐water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high‐load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38‐MNK1‐eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c‐Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre‐rRNAs (45S, ITS‐28S, ITS‐5.8S, and ETS‐18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre‐rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise.
    Full-text · Article · Feb 2016
  • Source
    • "Sumoylation did not interfere with mRNA recognition but enhanced eIF4F complex assembly on the mRNA cap, promoting the expression of ornithine decarboxylase, c-myc and Bcl-2, driving the anti-apoptotic and oncogenic activity of eIF4E [33]. As phosphorylation of eIF4E has been shown to play a role in selective nuclear export of mRNA [71], it is likely that sumoylation of eIF4E occurs in the nucleus and/or as it emerges into the cytoplasm "
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    • "They are highly expressed in several tumor types [6]–[8] and enhanced eIF-4E phosphorylation is also observed [3], [9], [10]. Genetic manipulation of MNKs and with phosphodefective eIF-4E constructs in pre-clinical models [3], [11], [12] also support a role for MNKs in tumor development. MNK-induced eIF-4E phosphorylation correlates with an increased translational efficiency of a subset of mRNAs encoding tumor-promoting proteins [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Because multiple myeloma (MM) cells are at risk for endoplasmic reticulum (ER) stress, they require a carefully regulated mechanism to promote protein translation of selected transcripts when proliferation is stimulated. MAPK-interacting kinases (MNKs) may provide this mechanism by enhancing cap-dependent translation of a small number of critical transcripts. We, thus, tested whether MNKs played a role in MM responses to the myeloma growth factor interleukin-6 (IL-6). IL-6 activated MNK1 phosphorylation and induced phosphorylation of its substrate, eIF-4E, in MM lines and primary specimens. MNK paralysis, achieved pharmacologically or by shRNA, prevented MM expansion stimulated by IL-6. A phosphodefective eIF-4E mutant also prevented the IL-6 response, supporting the notion that MNK's role was via phosphorylation of eIF-4E. Both pharmacological MNK inhibition and expression of the phosphodefective eIF-4E mutant inhibited MM growth in mice. Although critical for IL-6-induced expansion, eIF-4E phosphorylation had no significant effect on global translation or Ig expression. Deep sequencing of ribosome-protected mRNAs revealed a repertoire of genes involved in metabolic processes and ER stress modulation whose translation was regulated by eIF-4E phosphorylation. These data indicate MM cells exploit the MNK/eIF-4E pathway for selective mRNA translation without enhancing global translation and risking ER stress.
    Full-text · Article · Apr 2014 · PLoS ONE
Show more