Chang NS, Schultz L, Hsu LJ, Lewis J, Su MSze CI.. 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene 24: 714-723

Guthrie Research Institute, Laboratory of Molecular Immunology, 1 Guthrie Square, Sayre, PA 18840, USA.
Oncogene (Impact Factor: 8.46). 02/2005; 24(4):714-23. DOI: 10.1038/sj.onc.1208124
Source: PubMed


Human WWOX gene encodes a proapoptotic WW domain-containing oxidoreductase WOX1 (also named WWOX, FOR2 or WWOXv1). Apoptotic and stress stimuli activate WOX1 via Tyr33 phosphorylation and nuclear translocation. WOX1 possesses a tetrad NSYK motif in the C-terminal short-chain alcohol dehydrogenase/reductase (SDR) domain, which may bind estrogen and androgen. Here, we determined that 17beta-estradiol (E(2)) activated WOX1, p53 and ERK in COS7 fibroblasts, primary lung epithelial cells, and androgen receptor (AR)-negative prostate DU145 cells, but not in estrogen receptor (ER)-positive breast MCF7 cells. Androgen also activated WOX1 in the AR-negative DU145 cells. These observations suggest that sex hormone-mediated Tyr33 phosphorylation and nuclear translocation of WOX1 is independent of ER and AR. Stress stimuli increase physical binding of p53 with WOX1 in vivo. We determined here that E(2) increased the formation of p53/WOX1 complex and their nuclear translocation in COS7 cells; however, nuclear translocation of this complex could not occur in MCF7 cells. By immunohistochemistry, we determined that progression of prostate from normal to hyperplasia, cancerous and metastatic stages positively correlate with upregulation and activation of WOX1 and WOX2 (FOR1/WWOXv2). In contrast, breast cancer development to a premetastatic state is associated with upregulation and Tyr33 phosphorylation of cytosolic WOX1 and WOX2, followed by significant downregulation or absent expression during metastasis. These Tyr33-phosphorylated proteins are mostly located in the mitochondria without translocating to the nuclei, which is comparable to those findings in cultured breast cancer cells. Together, sex steroid hormone-induced activation of WOX1 and WOX2 is independent of ER and AR, and this activation positively correlates with cancerous progression of prostate and breast to a premetastatic state.

Download full-text


Available from: Nan-Shan Chang
  • Source
    • "The subcellular localization and function of WWOX are regulated by its phosphorylation. WWOX Tyr33 phosphorylation can be stimulated by steriod hormone 17β-estradiol (E2) independent of the estrogen receptor (ER) 9. WWOX can also be translocated into the nucleus upon Tyr33 phosphorylation induced by anisomycin or UV light at the first N-terminal WW domain of WWOX in L929 fibroblasts and other cell lines. "
    [Show abstract] [Hide abstract]
    ABSTRACT: WWOX, a gene that spans the second most common chromosomal fragile site (FRA16D), often exhibits homozygous deletions and translocation breakpoints under multiple cellular stresses induced by extrinsic or intrinsic factors, such as hypoxia, UV, and DNA damage regents. Loss of WWOX is closely related to genomic instability, tumorigenesis, cancer progression and therapy resistance. WWOX heterozygous knockout mice show an increased incidence of spontaneous or induced tumors. WWOX can interact via the WW domain with proteins that possess proline PPxY motifs and is involved in a variety of cellular processes. Accumulating evidence has shown that WWOX that contains a short-chain dehydrogenase/reductase (SDR) domain is involved in steroid metabolism and bone development. Reduced or lost expression of WWOX will lead to development of metabolic disease. In this review, we focus on the roles of WWOX in metabolic disorders and tumors.
    Full-text · Article · Jan 2014 · International journal of biological sciences
  • Source
    • "Failure of ectopic WWOX in inducing apoptosis of glioma cells possessing wild type p53 is unusual (Chiang et al., 2012). In most cases, we have shown that p53 functionally interacts with WWOX, and both proteins induce apoptosis in a synergistic manner (Chang et al., 2001, 2003, 2005a,b, 2007, 2010, 2012; Su et al., 2012). A likely scenario is that p53-binding proteins, which are present in GBMs, may interfere with the apoptotic function of WWOX and p53. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs) and appears to contribute, in part, to resistance to temozolomide (TMZ) and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1) is a proapoptotic protein and is considered as a tumor suppressor. Loss of gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.
    Full-text · Article · Mar 2013 · Frontiers in Oncology
  • Source
    • "WOX1 may physically interact with p53 and JNK1 to regulate apoptosis in vitro and in vivo [6]–[8], [13], [15], [16]. By using p53 knockout mice, axotomy induced accumulation of p-WOX1, c-Jun, p-JNK1 and ATF3 in the nuclei of ipsilateral DRG neurons post injury for 1 day (data not shown). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-kappaB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-kappaB (40-65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-kappaB. WOX1 directly activated NF-kappaB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons. Rapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-kappaB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-kappaB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury.
    Full-text · Article · Nov 2009 · PLoS ONE
Show more