CYP superfamily perturbation by diflubenzuron or acephate in different tissues of CD1 mice

Department of Pharmacology, Molecular Toxicology Unit, Alma-Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
Food and Chemical Toxicology (Impact Factor: 2.9). 02/2005; 43(1):173-83. DOI: 10.1016/j.fct.2004.09.007
Source: PubMed


This work aimed to investigate whether the insecticide acephate (125 or 250 mg/kg b.w.) or diflubenzuron (752 or 1075 mg/kg b.w.), two of the most widely used pesticides worldwide, impairs CYP-linked murine metabolism in liver, kidney and lung microsomes after repeated (daily, for three consecutive days) i.p. administration. The regio- and stereo-selective hydroxylation of testosterone was used as multibiomarker of different CYP isoforms. Both gender and tissue specific effects were observed. Lung was the most responsive tissue to induction by lower diflubenzuron dose, as exemplified by the marked increase of testosterone 7alpha-hydroxylation (CYP2A) (up to 13-fold) in males. Higher dose produced a generalized inactivation. At the lower dose acephate induced 6beta- (CYP3A1/2, liver) as well as 2beta- (CYP2B1/2, kidney) hydroxylase activities ( approximately 5 and approximately 4-fold increase, respectively) in males. In females, a marked suppression of the various hydroxylations was observed. At 250 mg/kg of acephate, animals did not survive. Induction of the most affected isoforms was sustained by immunoblotting analysis. Corresponding human CYP modulations might disrupt normal physiological functions related to these enzymes. Furthermore, the co-mutagenic and promoting potential of these pesticides, phenomena linked to CYP upregulation (e.g. increased bioactivation of ubiquitous pollutants and generation of oxygen free radicals) are of concern for a more complete definition of their overall toxicological potential.

11 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insecticides have a pivotal role in our lives, not only for crop protection in agriculture, but also to avoid the spreading of harmful pests causing human diseases such as malaria. Due to economic and medical reasons, the design of effective agents that control these pests is quite an important task in agrochemical science and in the industrial sector. Nevertheless, the non-restricted use of highly toxic insecticides for several decades has provoked negative effects in the environment and the poisoning of non-targeted species. For these reasons, the development of selective and harmless insecticides is needed. A short overview of some of the recent advances in the chemistry of insecticides is presented, with a highlight of their greenness compared with classical insecticides. Synthesis, mode of action and environmental profile of pyrethroids, neonicotinoids, and insect growth regulators will be described. Furthermore, the use of biological insecticides such as spinosyns, azadirachtin, and Bacillus thuringiensis as green alternatives for synthetic insecticides will also be reviewed.
    Full-text · Article · Jun 2005 · Green Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.
    Full-text · Article · Jul 2006 · Toxicological Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: It was previously found that fenarimol, vinclozolin or acephate, three of the most used pesticides worldwide, provoked a marked perturbation of murine cytochrome P450 (CYP)-linked monooxygenases. Here, to more closely mimic human exposure, it was investigated whether different pesticide combinations administered i.p. in male Swiss Albino CD1 mice in single or repeated fashion (daily, for three consecutive days), affect CYP-dependent oxidations. The four simulated mixtures showed a complex pattern of CYP induction and suppression, especially after repeated injection. For example, while fenarimol alone was the most inducing agent--reaching a 79-fold increase over control in testosterone 2alpha-hydroxylase--followed by vinclozolin and acephate, coadministration with the former markedly reduced induction. Coadministration with vinclozolin, determined various positive and negative modulations. An increase of CYP2B1/2 and CYP3A1/2-associated oxidases and a decrease of ethoxycoumarin metabolism was observed in the acephate and vinclozolin mixture. An equivalent or reduced CYP expression, if compared to double combinations, was seen using the complete mixture. Taken as a whole, the unpredictability of the recorded effects with simple mixtures, shrinks the misleading extrapolation performed on a single pesticide. If reproduced in human, such changes, altering either endogenous metabolism or biotransformation of ubiquitous toxins, might have public health implications.
    No preview · Article · Feb 2008 · Food and Chemical Toxicology
Show more