Analysis of the Major Patterns of B Cell Gene Expression Changes in Response to Short-Term Stimulation with 33 Single Ligands

University of California, San Diego, San Diego, California, United States
The Journal of Immunology (Impact Factor: 4.92). 01/2005; 173(12):7141-9. DOI: 10.4049/jimmunol.173.12.7141
Source: PubMed


We examined the major patterns of changes in gene expression in mouse splenic B cells in response to stimulation with 33 single ligands for 0.5, 1, 2, and 4 h. We found that ligands known to directly induce or costimulate proliferation, namely, anti-IgM (anti-Ig), anti-CD40 (CD40L), LPS, and, to a lesser extent, IL-4 and CpG-oligodeoxynucleotide (CpG), induced significant expression changes in a large number of genes. The remaining 28 single ligands produced changes in relatively few genes, even though they elicited measurable elevations in intracellular Ca(2+) and cAMP concentration and/or protein phosphorylation, including cytokines, chemokines, and other ligands that interact with G protein-coupled receptors. A detailed comparison of gene expression responses to anti-Ig, CD40L, LPS, IL-4, and CpG indicates that while many genes had similar temporal patterns of change in expression in response to these ligands, subsets of genes showed unique expression patterns in response to IL-4, anti-Ig, and CD40L.

Download full-text


Available from: Jamie Lee, May 07, 2014
  • Source
    • "In addition Ca2+, phosphoinositide 3 kinase (PI3K), Erk1/2, canonical NF-кB, JNK1/2, p38a signalling can be initiated by B cell receptor activation [2,13-16]. In addition, aberrant signalling caused by a defined set of mutations or autocrine and paracrine loops for these pathways have been reported to be important for B cell lymphoma initiation or maintenance [2,11,17-19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses or negative feedback loops. Using chemical inhibitors for selected kinases we show that mitogen activated protein kinase- and phosphoinositide 3 kinase-signalling are dominantly involved in regulating genes included in the αIgM gene module. Conclusion We provide an in vitro model system to investigate pathway activation in lymphomas. We defined the extent to which different immune response associated pathways are responsible for differences in gene expression which distinguish individual DLBCL cases. Our results support the view that tonic or constitutively active MAPK/ERK pathways are an important part of oncogenic signalling in NHL. The experimental model can now be applied to study the therapeutic potential of deregulated oncogenic pathways and to develop individual treatment strategies for lymphoma patients.
    Full-text · Article · Dec 2012 · Cell Communication and Signaling
  • Source
    • "Hybridization and the resulting analyses were performed as previously described [11-13]. Cy5-labeled cRNA (from ligand-treated cells) and Cy3-labeled cRNA (from time-matched controls) were hybridized in the array. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-β, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.
    Full-text · Article · Sep 2012
  • Source
    • "cDNA synthesized from the RNA of B-cells was labeled with Cy5 and hybridized onto custom-made two-color Agilent cDNA arrays (Containing 16273 probes) with a Cy3-labeled cDNA prepared from the RNA of total splenocytes. There were a total of 424 Agilent chips hybridized in this study [7] [8]. The data was processed using MatLab Ò Bioinformatics toolbox. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells.
    Full-text · Article · Jun 2012 · Genomics Proteomics & Bioinformatics
Show more